1887

Abstract

We recently showed that the two-component system (TCS) HrrSA plays a central role in the control of haem homeostasis in the Gram-positive soil bacterium Here, we characterized the function of another TCS of this organism, ChrSA, which exhibits significant sequence similarity to HrrSA, and provide evidence for cross-regulation of the two systems. In this study, ChrSA was shown to be crucial for haem resistance of by activation of the putative haem-detoxifying ABC-transporter HrtBA in the presence of haem. Deletion of either or resulted in a strongly increased sensitivity towards haem. DNA microarray analysis and gel retardation assays with the purified response regulator ChrA revealed that phosphorylated ChrA acts as an activator of in the presence of haem. The haem oxygenase gene, , showed a decreased mRNA level in a deletion mutant but no significant binding of ChrA to the promoter was observed . In contrast, activation from P fused to was almost abolished in an mutant, indicating that HrrSA is the dominant system for haem-dependent activation of in . Remarkably, ChrA was also shown to bind to the promoter and to repress transcription of the paralogous response regulator, whereas itself seemed to be repressed by HrrA. These data suggest a close interplay of HrrSA and ChrSA at the level of transcription and emphasize ChrSA as a second TCS involved in haem-dependent gene regulation in , besides HrrSA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.062638-0
2012-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/12/3020.html?itemId=/content/journal/micro/10.1099/mic.0.062638-0&mimeType=html&fmt=ahah

References

  1. Allen C. E., Schmitt M. P. ( 2009). HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae . J Bacteriol 191:2638–2648 [View Article][PubMed]
    [Google Scholar]
  2. Allen C. E., Schmitt M. P. ( 2011). Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol 193:5374–5385 [View Article][PubMed]
    [Google Scholar]
  3. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. ( 2003). Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237 [View Article][PubMed]
    [Google Scholar]
  4. Bibb L. A., Schmitt M. P. ( 2010). The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae . J Bacteriol 192:4606–4617 [View Article][PubMed]
    [Google Scholar]
  5. Bibb L. A., King N. D., Kunkle C. A., Schmitt M. P. ( 2005). Analysis of a heme-dependent signal transduction system in Corynebacterium diphtheriae: deletion of the chrAS genes results in heme sensitivity and diminished heme-dependent activation of the hmuO promoter. Infect Immun 73:7406–7412 [View Article][PubMed]
    [Google Scholar]
  6. Bibb L. A., Kunkle C. A., Schmitt M. P. ( 2007). The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae . Infect Immun 75:2421–2431 [View Article][PubMed]
    [Google Scholar]
  7. Blom J., Jakobi T., Doppmeier D., Jaenicke S., Kalinowski J., Stoye J., Goesmann A. ( 2011). Exact and complete short-read alignment to microbial genomes using Graphics Processing Unit programming. Bioinformatics 27:1351–1358 [View Article][PubMed]
    [Google Scholar]
  8. Bott M., Brocker M. ( 2012). Two-component signal transduction in Corynebacterium glutamicum and other corynebacteria: on the way towards stimuli and targets. Appl Microbiol Biotechnol 94:1131–1150 [View Article][PubMed]
    [Google Scholar]
  9. Boyd J., Oza M. N., Murphy J. R. ( 1990). Molecular cloning and DNA sequence analysis of a diphtheria tox iron-dependent regulatory element (dtxR) from Corynebacterium diphtheriae . Proc Natl Acad Sci U S A 87:5968–5972 [View Article][PubMed]
    [Google Scholar]
  10. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  11. Brocker M., Mack C., Bott M. ( 2011). Target genes, consensus binding site, and role of phosphorylation for the response regulator MtrA of Corynebacterium glutamicum . J Bacteriol 193:1237–1249 [View Article][PubMed]
    [Google Scholar]
  12. Burgos J. M., Schmitt M. P. ( 2012). The ChrA response regulator in Corynebacterium diphtheriae controls hemin-regulated gene expression through binding to the hmuO and hrtAB promoter regions. J Bacteriol 194:1717–1729 [View Article][PubMed]
    [Google Scholar]
  13. Burkovski A. ( 2008). Corynebacteria: Genomics and Molecular Biology Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  14. Cerdeño-Tárraga A. M., Efstratiou A., Dover L. G., Holden M. T., Pallen M., Bentley S. D., Besra G. S., Churcher C., James K. D. & other authors ( 2003). The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523 [View Article][PubMed]
    [Google Scholar]
  15. Drazek E. S., Hammack C. A., Schmitt M. P. ( 2000). Corynebacterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol Microbiol 36:68–84 [View Article][PubMed]
    [Google Scholar]
  16. Eggeling L., Bott M. (editors) ( 2005). Handbook of Corynebacterium glutamicum Boca Raton, FL: Academic Press; [View Article]
    [Google Scholar]
  17. Ehira S., Ogino H., Teramoto H., Inui M., Yukawa H. ( 2009). Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum . J Biol Chem 284:16736–16742 [View Article][PubMed]
    [Google Scholar]
  18. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Lüdtke K. U., Sahm H. ( 1994). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828 [View Article][PubMed]
    [Google Scholar]
  19. Frunzke J., Bott M. ( 2008). Regulation of iron homeostasis in Corynebacterium glutamicum . Corynebacteria: Genomics and Molecular Biology241–266 Burkovski A. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  20. Frunzke J., Engels V., Hasenbein S., Gätgens C., Bott M. ( 2008). Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322 [View Article][PubMed]
    [Google Scholar]
  21. Frunzke J., Gätgens C., Brocker M., Bott M. ( 2011). Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J Bacteriol 193:1212–1221 [View Article][PubMed]
    [Google Scholar]
  22. Gao R., Mack T. R., Stock A. M. ( 2007). Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32:225–234 [View Article][PubMed]
    [Google Scholar]
  23. Hantke K. ( 2001). Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177 [View Article][PubMed]
    [Google Scholar]
  24. Ito Y., Nakagawa S., Komagata A., Ikeda-Saito M., Shiro Y., Nakamura H. ( 2009). Heme-dependent autophosphorylation of a heme sensor kinase, ChrS, from Corynebacterium diphtheriae reconstituted in proteoliposomes. FEBS Lett 583:2244–2248 [View Article][PubMed]
    [Google Scholar]
  25. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. & other authors ( 2003). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [View Article][PubMed]
    [Google Scholar]
  26. Keilhauer C., Eggeling L., Sahm H. ( 1993). Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol 175:5595–5603[PubMed]
    [Google Scholar]
  27. Kensy F., Zang E., Faulhammer C., Tan R. K., Büchs J. ( 2009). Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31 [View Article][PubMed]
    [Google Scholar]
  28. Kocan M., Schaffer S., Ishige T., Sorger-Herrmann U., Wendisch V. F., Bott M. ( 2006). Two-component systems of Corynebacterium glutamicum: deletion analysis and involvement of the PhoS-PhoR system in the phosphate starvation response. J Bacteriol 188:724–732 [View Article][PubMed]
    [Google Scholar]
  29. Krell T., Lacal J., Busch A., Silva-Jiménez H., Guazzaroni M. E., Ramos J. L. ( 2010). Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559 [View Article][PubMed]
    [Google Scholar]
  30. Kunkle C. A., Schmitt M. P. ( 2007). Comparative analysis of hmuO function and expression in Corynebacterium species. J Bacteriol 189:3650–3654 [View Article][PubMed]
    [Google Scholar]
  31. Laub M. T., Goulian M. ( 2007). Specificity in two-component signal transduction pathways. Annu Rev Genet 41:121–145 [View Article][PubMed]
    [Google Scholar]
  32. Lechardeur D., Cesselin B., Liebl U., Vos M. H., Fernandez A., Brun C., Gruss A., Gaudu P. ( 2012). Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis . J Biol Chem 287:4752–4758 [View Article][PubMed]
    [Google Scholar]
  33. Madan Babu M., Teichmann S. A. ( 2003). Functional determinants of transcription factors in Escherichia coli: protein families and binding sites. Trends Genet 19:75–79 [View Article][PubMed]
    [Google Scholar]
  34. Mascher T., Helmann J. D., Unden G. ( 2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938 [View Article][PubMed]
    [Google Scholar]
  35. Möker N., Brocker M., Schaffer S., Krämer R., Morbach S., Bott M. ( 2004). Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54:420–438 [View Article][PubMed]
    [Google Scholar]
  36. Nobles C. L., Maresso A. W. ( 2011). The theft of host heme by Gram-positive pathogenic bacteria. Metallomics 3:788–796 [View Article][PubMed]
    [Google Scholar]
  37. Pátek M., Nešvera J. ( 2011). Sigma factors and promoters in Corynebacterium glutamicum . J Biotechnol 154:101–113 [View Article][PubMed]
    [Google Scholar]
  38. Polen T., Wendisch V. F. ( 2004). Genomewide expression analysis in amino acid-producing bacteria using DNA microarrays. Appl Biochem Biotechnol 118:215–232 [View Article][PubMed]
    [Google Scholar]
  39. Sambrook J., MacCallum P., Russell D. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schaaf S., Bott M. ( 2007). Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum . J Bacteriol 189:5002–5011 [View Article][PubMed]
    [Google Scholar]
  41. Schelder S., Zaade D., Litsanov B., Bott M., Brocker M. ( 2011). The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress. PLoS ONE 6:e22143 [View Article][PubMed]
    [Google Scholar]
  42. Schmitt M. P. ( 1997). Transcription of the Corynebacterium diphtheriae hmuO gene is regulated by iron and heme. Infect Immun 65:4634–4641[PubMed]
    [Google Scholar]
  43. Skaar E. P. ( 2010). The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949 [View Article][PubMed]
    [Google Scholar]
  44. Stauff D. L., Skaar E. P. ( 2009a). The heme sensor system of Staphylococcus aureus . Contrib Microbiol 16:120–135 [View Article][PubMed]
    [Google Scholar]
  45. Stauff D. L., Skaar E. P. ( 2009b). Bacillus anthracis HssRS signalling to HrtAB regulates haem resistance during infection. Mol Microbiol 72:763–778 [View Article][PubMed]
    [Google Scholar]
  46. Stauff D. L., Bagaley D., Torres V. J., Joyce R., Anderson K. L., Kuechenmeister L., Dunman P. M., Skaar E. P. ( 2008). Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 190:3588–3596 [View Article][PubMed]
    [Google Scholar]
  47. Stock A. M., Robinson V. L., Goudreau P. N. ( 2000). Two-component signal transduction. Annu Rev Biochem 69:183–215 [View Article][PubMed]
    [Google Scholar]
  48. Studier F. W., Moffatt B. A. ( 1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130 [View Article][PubMed]
    [Google Scholar]
  49. Trost E., Ott L., Schneider J., Schröder J., Jaenicke S., Goesmann A., Husemann P., Stoye J., Dorella F. A. & other authors ( 2010). The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 11:728 [View Article][PubMed]
    [Google Scholar]
  50. Wennerhold J., Bott M. ( 2006). The DtxR regulon of Corynebacterium glutamicum . J Bacteriol 188:2907–2918 [View Article][PubMed]
    [Google Scholar]
  51. Wennerhold J., Krug A., Bott M. ( 2005). The AraC-type regulator RipA represses aconitase and other iron proteins from Corynebacterium under iron limitation and is itself repressed by DtxR. J Biol Chem 280:40500–40508 [View Article][PubMed]
    [Google Scholar]
  52. West A. H., Stock A. M. ( 2001). Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376 [View Article][PubMed]
    [Google Scholar]
  53. Wilks A., Schmitt M. P. ( 1998). Expression and characterization of a heme oxygenase (HmuO) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. J Biol Chem 273:837–841 [View Article][PubMed]
    [Google Scholar]
  54. Yukawa H., Omumasaba C. A., Nonaka H., Kós P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J. & other authors ( 2007). Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.062638-0
Loading
/content/journal/micro/10.1099/mic.0.062638-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error