1887

Abstract

The role of the CcpC regulatory protein as a repressor of the genes encoding the tricarboxylic acid branch enzymes of the Krebs cycle (citrate synthase, ; aconitase, ; and isocitrate dehydrogenase, ) has been established for both and . In addition, hyperexpression of reporter constructs in an aconitase null mutant strain has been reported for . We show here that such hyperexpression of occurs in as well as in and that in both species the hyperexpression is unexpectedly dependent on CcpC. We propose a revision of the existing CcpC– regulatory scheme and suggest a mechanism of regulation in which CcpC represses expression at low citrate levels and activates expression when citrate levels are high.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063388-0
2013-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/1/68.html?itemId=/content/journal/micro/10.1099/mic.0.063388-0&mimeType=html&fmt=ahah

References

  1. Behari J., Youngman P.( 1998). A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 180:6316–6324[PubMed]
    [Google Scholar]
  2. Belitsky B. R., Janssen P. J., Sonenshein A. L.( 1995). Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J Bacteriol 177:5686–5695[PubMed]
    [Google Scholar]
  3. Blencke H.-M., Reif I., Commichau F. M., Detsch C., Wacker I., Ludwig H., Stülke J.( 2006). Regulation of citB expression in Bacillus subtilis: integration of multiple metabolic signals in the citrate pool and by the general nitrogen regulatory system. Arch Microbiol 185:136–146 [View Article][PubMed]
    [Google Scholar]
  4. Brehm S. P., Staal S. P., Hoch J. A.( 1973). Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. J Bacteriol 115:1063–1070[PubMed]
    [Google Scholar]
  5. Chang M., Crawford I. P.( 1990). The roles of indoleglycerol phosphate and the TrpI protein in the expression of trpBA from Pseudomonas aeruginosa. Nucleic Acids Res 18:979–988 [View Article][PubMed]
    [Google Scholar]
  6. Craig J. E., Ford M. J., Blaydon D. C., Sonenshein A. L.( 1997). A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression. J Bacteriol 179:7351–7359[PubMed]
    [Google Scholar]
  7. Dean D. R., Hoch J. A., Aronson A. I.( 1977). Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J Bacteriol 131:981–987[PubMed]
    [Google Scholar]
  8. Dingman D. W., Sonenshein A. L.( 1987). Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the sequence of the citB gene. J Bacteriol 169:3062–3067[PubMed]
    [Google Scholar]
  9. Fliss I., Emond E., Simard R. E., Pandian S.( 1991). A rapid and efficient method of lysis of Listeria and other Gram-positive bacteria using mutanolysin. Biotechniques 11:453–, 456–457[PubMed]
    [Google Scholar]
  10. Fouet A., Sonenshein A. L.( 1990). A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J Bacteriol 172:835–844[PubMed]
    [Google Scholar]
  11. Fouet A., Jin S. F., Raffel G., Sonenshein A. L.( 1990). Multiple regulatory sites in the Bacillus subtilis citB promoter region. J Bacteriol 172:5408–5415[PubMed]
    [Google Scholar]
  12. Gunka K., Newman J. A., Commichau F. M., Herzberg C., Rodrigues C., Hewitt L., Lewis R. J., Stülke J.( 2010). Functional dissection of a trigger enzyme: mutations of the Bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J Mol Biol 400:815–827 [View Article][PubMed]
    [Google Scholar]
  13. Handke L. D., Shivers R. P., Sonenshein A. L.( 2008). Interaction of Bacillus subtilis CodY with GTP. J Bacteriol 190:798–806 [View Article][PubMed]
    [Google Scholar]
  14. Huang J. Z., Schell M. A.( 1991). In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation. J Biol Chem 266:10830–10838[PubMed]
    [Google Scholar]
  15. Jault J. M., Fieulaine S., Nessler S., Gonzalo P., Di Pietro A., Deutscher J., Galinier A.( 2000). The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. J Biol Chem 275:1773–1780 [View Article][PubMed]
    [Google Scholar]
  16. Jobe A., Bourgeois S.( 1972). lac Repressor–operator interaction. VI. The natural inducer of the lac operon. J Mol Biol 69:397–408 [View Article][PubMed]
    [Google Scholar]
  17. Jourlin-Castelli C., Mani N., Nakano M. M., Sonenshein A. L.( 2000). CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J Mol Biol 295:865–878 [View Article][PubMed]
    [Google Scholar]
  18. Kim H. J., Jourlin-Castelli C., Kim S. I., Sonenshein A. L.( 2002a). Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Mol Microbiol 43:399–410 [View Article][PubMed]
    [Google Scholar]
  19. Kim H. J., Roux A., Sonenshein A. L.( 2002b). Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 45:179–190 [View Article][PubMed]
    [Google Scholar]
  20. Kim H. J., Kim S. I., Ratnayake-Lecamwasam M., Tachikawa K., Sonenshein A. L., Strauch M.( 2003a). Complex regulation of the Bacillus subtilis aconitase gene. J Bacteriol 185:1672–1680 [View Article][PubMed]
    [Google Scholar]
  21. Kim S. I., Jourlin-Castelli C., Wellington S. R., Sonenshein A. L.( 2003b). Mechanism of repression by Bacillus subtilis CcpC, a LysR family regulator. J Mol Biol 334:609–624 [View Article][PubMed]
    [Google Scholar]
  22. Kim H. J., Mittal M., Sonenshein A. L.( 2006). CcpC-dependent regulation of citB and lmo0847 in Listeria monocytogenes. J Bacteriol 188:179–190 [View Article][PubMed]
    [Google Scholar]
  23. Maddocks S. E., Oyston P. C.( 2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623 [View Article][PubMed]
    [Google Scholar]
  24. Meiss H. K., Brill W. J., Magasanik B.( 1969). Genetic control of histidine degradation in Salmonella typhimurium, strain LT-2. J Biol Chem 244:5382–5391[PubMed]
    [Google Scholar]
  25. Miller J.( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Mittal M.( 2008). The roles of CcpC and CodY in regulation of Krebs cycle genes and virulence of Listeria monocytogenes. Tufts University, Boston, MA:
    [Google Scholar]
  27. Mittal M., Picossi S., Sonenshein A. L.( 2009). CcpC-dependent regulation of citrate synthase gene expression in Listeria monocytogenes. J Bacteriol 191:862–872 [View Article][PubMed]
    [Google Scholar]
  28. Picossi S., Belitsky B. R., Sonenshein A. L.( 2007). Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. J Mol Biol 365:1298–1313 [View Article][PubMed]
    [Google Scholar]
  29. Serio A. W., Pechter K. B., Sonenshein A. L.( 2006). Bacillus subtilis aconitase is required for efficient late-sporulation gene expression. J Bacteriol 188:6396–6405 [View Article][PubMed]
    [Google Scholar]
  30. Sonenshein A. L.( 2007). Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 5:917–927 [View Article][PubMed]
    [Google Scholar]
  31. Toledano M. B., Kullik I., Trinh F., Baird P. T., Schneider T. D., Storz G.( 1994). Redox-dependent shift of OxyR–DNA contacts along an extended DNA-binding site: a mechanism for differential promoter selection. Cell 78:897–909 [View Article][PubMed]
    [Google Scholar]
  32. van Keulen G., Ridder A. N., Dijkhuizen L., Meijer W. G.( 2003). Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J Bacteriol 185:1245–1252 [View Article][PubMed]
    [Google Scholar]
  33. Villapakkam A. C., Handke L. D., Belitsky B. R., Levdikov V. M., Wilkinson A. J., Sonenshein A. L.( 2009). Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids. J Bacteriol 191:6865–6876 [View Article][PubMed]
    [Google Scholar]
  34. Wang L., Winans S. C.( 1995). The sixty nucleotide OccR operator contains a subsite essential and sufficient for OccR binding and a second subsite required for ligand-responsive DNA bending. J Mol Biol 253:691–702 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063388-0
Loading
/content/journal/micro/10.1099/mic.0.063388-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error