1887

Abstract

is an opportunistic fungal pathogen which is a growing concern for immunocompromised patients. It is ranked as the second most common cause of candidiasis after . For pathogenic yeasts, intracellular pH (pH) has been implicated in proliferation, dimorphic switching and virulence. We expressed the pH-sensitive green fluorescent protein variant ratiometric pHluorin in the cytosol of to study pH dynamics in living cells. We evaluated the response of pH to the various growth and stress conditions encountered during interaction with the host and during antifungal treatment. maintained a pH higher than that of in all growth conditions. The pH of cells appeared better controlled than the pH in when the cells were exposed to food and fermentation-associated conditions. in turn maintained its pH better when exposed to host-associated conditions.

Funding
This study was supported by the:
  • HEC, Pakistan
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063610-0
2013-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/803.html?itemId=/content/journal/micro/10.1099/mic.0.063610-0&mimeType=html&fmt=ahah

References

  1. Aabo T., Glückstad J., Siegumfeldt H., Arneborg N. ( 2011). Intracellular pH distribution as a cell health indicator in Saccharomyces cerevisiae . J R Soc Interface 8:1635–1643 [PubMed] [CrossRef]
    [Google Scholar]
  2. Achkar J. M., Fries B. C. ( 2010). Candida infections of the genitourinary tract. Clin Microbiol Rev 23:253–273 [View Article] [PubMed]
    [Google Scholar]
  3. Anand S., Prasad R. ( 1989). Rise in intracellular pH is concurrent with ‘start’ progression of Saccharomyces cerevisiae . J Gen Microbiol 135:2173–2179 [PubMed]
    [Google Scholar]
  4. Ariño J. ( 2010). Integrative responses to high pH stress in S. cerevisiae . OMICS 14:517–523 [View Article] [PubMed]
    [Google Scholar]
  5. Bagar T., Altenbach K., Read N. D., Bencina M. ( 2009). Live-cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot Cell 8:703–712 [View Article] [PubMed]
    [Google Scholar]
  6. Bairwa G., Kaur R. ( 2011). A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata . Mol Microbiol 79:900–913 [View Article] [PubMed]
    [Google Scholar]
  7. Boskey E. R., Cone R. A., Whaley K. J., Moench T. R. ( 2001). Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod 16:1809–1813 [View Article] [PubMed]
    [Google Scholar]
  8. Bracey D., Holyoak C. D., Coote P. J. ( 1998). Comparison of the inhibitory effect of sorbic acid and amphotericin B on Saccharomyces cerevisiae: is growth inhibition dependent on reduced intracellular pH?. J Appl Microbiol 85:1056–1066 [View Article] [PubMed]
    [Google Scholar]
  9. Brett C. L., Tukaye D. N., Mukherjee S., Rao R. J. ( 2005). The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405 [View Article] [PubMed]
    [Google Scholar]
  10. Cardenas M. E., Cruz M. C., Del Poeta M., Chung N. J., Perfect J. R., Heitman J. ( 1999). Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin Microbiol Rev 12:583–611 [PubMed]
    [Google Scholar]
  11. Chirife J., Ferrofontan C. ( 1980). Prediction of water activity of aqueous-solutions in connection with intermediate moisture foods – experimental investigation of the a w lowering behavior of sodium lactate and some related-compounds. J Food Sci 45:802–804 [View Article]
    [Google Scholar]
  12. Cohen B. E. ( 2010). Amphotericin B membrane action: role for two types of ion channels in eliciting cell survival and lethal effects. J Membr Biol 238:1–20 [View Article] [PubMed]
    [Google Scholar]
  13. Colombo S., Ma P., Cauwenberg L., Winderickx J., Crauwels M., Teunissen A., Nauwelaers D., de Winde J. H., Gorwa M. F. & other authors ( 1998). Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae . EMBO J 17:3326–3341 [View Article] [PubMed]
    [Google Scholar]
  14. Coote P. J., Jones M. V., Seymour I. J., Rowe D. L., Ferdinando D. P., McArthur A. J., Cole M. B. ( 1994). Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae . Microbiology 140:1881–1890 [View Article] [PubMed]
    [Google Scholar]
  15. Cormack B. P., Falkow S. ( 1999). Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata . Genetics 151:979–987 [PubMed]
    [Google Scholar]
  16. Cottier F., Mühlschlegel F. A. ( 2009). Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol Lett 295:1–9 [View Article] [PubMed]
    [Google Scholar]
  17. Danby C. S., Boikov D., Rautemaa-Richardson R., Sobel J. D. ( 2012). Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. Antimicrob Agents Chemother 56:1403–1406 [View Article] [PubMed]
    [Google Scholar]
  18. Dang T. D., De Maeseneire S. L., Zhang B. Y., De Vos W. H., Rajkovic A., Vermeulen A., Van Impe J. F., Devlieghere F. ( 2012). Monitoring the intracellular pH of Zygosaccharomyces bailii by green fluorescent protein. Int J Food Microbiol 156:290–295 [View Article] [PubMed]
    [Google Scholar]
  19. Davis D., Edwards J. E. Jr, Mitchell A. P., Ibrahim A. S. ( 2000). Candida albicans RIM101 pH response pathway is required for host–pathogen interactions. Infect Immun 68:5953–5959 [View Article] [PubMed]
    [Google Scholar]
  20. de Lucena R. M., Elsztein C., Simões D. A., de Morais M. A. Jr ( 2012). Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J Appl Microbiol 113:629–640 [PubMed] [CrossRef]
    [Google Scholar]
  21. Dechant R., Binda M., Lee S. S., Pelet S., Winderickx J., Peter M. ( 2010). Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase. EMBO J 29:2515–2526 [View Article] [PubMed]
    [Google Scholar]
  22. Deresinski S. C., Stevens D. A. ( 2003). Caspofungin. Clin Infect Dis 36:1445–1457 [View Article] [PubMed]
    [Google Scholar]
  23. Edmond M. B., Wallace S. E., McClish D. K., Pfaller M. A., Jones R. N., Wenzel R. P. ( 1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244 [View Article] [PubMed]
    [Google Scholar]
  24. El Barkani A., Kurzai O., Fonzi W. A., Ramon A., Porta A., Frosch M., Mühlschlegel F. A. ( 2000). Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans . Mol Cell Biol 20:4635–4647 [PubMed] [CrossRef]
    [Google Scholar]
  25. Fidel P. L. Jr, Vazquez J. A., Sobel J. D. ( 1999). Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans . Clin Microbiol Rev 12:80–96 [PubMed]
    [Google Scholar]
  26. Fonzi W. A. ( 2002). Role of pH response in Candida albicans virulence. Mycoses 45:Suppl. 116–21 [View Article] [PubMed]
    [Google Scholar]
  27. Frieman M. B., McCaffery J. M., Cormack B. P. ( 2002). Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Mol Microbiol 46:479–492 [View Article] [PubMed]
    [Google Scholar]
  28. Galdieri L., Mehrotra S., Yu S. A., Vancura A. ( 2010). Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS 14:629–638 [PubMed] [CrossRef]
    [Google Scholar]
  29. Gasch A. P., Werner-Washburne M. ( 2002). The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192 [PubMed] [CrossRef]
    [Google Scholar]
  30. Hesse S. J. A., Ruijter G. J. G., Dijkema C., Visser J. ( 2000). Measurement of intracellular (compartmental) pH by 31P NMR in Aspergillus niger . J Biotechnol 77:5–15 [View Article] [PubMed]
    [Google Scholar]
  31. Horn D. L., Neofytos D., Anaissie E. J., Fishman J. A., Steinbach W. J., Olyaei A. J., Marr K. A., Pfaller M. A., Chang C. H., Webster K. M. ( 2009). Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis 48:1695–1703 [PubMed] [CrossRef]
    [Google Scholar]
  32. Horowitz B. J., Mårdh P. A. ( 1991). Vaginitis and Vaginosis New York: Wiley-Liss;
    [Google Scholar]
  33. Jacobsen I. D., Brunke S., Seider K., Schwarzmüller T., Firon A., d'Enfért C., Kuchler K., Hube B. ( 2010). Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun 78:1066–1077 [PubMed] [CrossRef]
    [Google Scholar]
  34. Jandric Z., Schüller C. ( 2011). Stress response in Candida glabrata: pieces of a fragmented picture. Future Microbiol 6:1475–1484 [View Article] [PubMed]
    [Google Scholar]
  35. Kapteyn J. C., ter Riet B., Vink E., Blad S., De Nobel H., Van Den Ende H., Klis F. M. ( 2001). Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–480 [PubMed] [CrossRef]
    [Google Scholar]
  36. Karagiannis J., Young P. G. ( 2001). Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe . J Cell Sci 114:2929–2941 [PubMed]
    [Google Scholar]
  37. Kaur R., Domergue R., Zupancic M. L., Cormack B. P. ( 2005). A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384 [View Article] [PubMed]
    [Google Scholar]
  38. Kaur R., Ma B., Cormack B. P. ( 2007). A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata . Proc Natl Acad Sci U S A 104:7628–7633 [PubMed] [CrossRef]
    [Google Scholar]
  39. Klis F. M., Boorsma A., De Groot P. W. J. ( 2006). Cell wall construction in Saccharomyces cerevisiae . Yeast 23:185–202 [View Article] [PubMed]
    [Google Scholar]
  40. Krebs H. A., Wiggins D., Stubbs M., Sols A., Bedoya F. ( 1983). Studies on the mechanism of the antifungal action of benzoate. Biochem J 214:657–663 [PubMed]
    [Google Scholar]
  41. Kresnowati M. T., Suarez-Mendez C., Groothuizen M. K., van Winden W. A., Heijnen J. J. ( 2007). Measurement of fast dynamic intracellular pH in Saccharomyces cerevisiae using benzoic acid pulse. Biotechnol Bioeng 97:86–98 [View Article] [PubMed]
    [Google Scholar]
  42. Kresnowati M. T., van Winden W. A., van Gulik W. M., Heijnen J. J. ( 2008). Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid. FEBS J 275:5527–5541 [PubMed] [CrossRef]
    [Google Scholar]
  43. Laniado-Laborín R., Cabrales-Vargas M. N. ( 2009). Amphotericin B: side effects and toxicity. Rev Iberoam Micol 26:223–227 [View Article] [PubMed]
    [Google Scholar]
  44. Lasorsa F. M., Scarcia P., Erdmann R., Palmieri F., Rottensteiner H., Palmieri L. ( 2004). The yeast peroxisomal adenine nucleotide transporter: characterization of two transport modes and involvement in ΔpH formation across peroxisomal membranes. Biochem J 381:581–585 [View Article] [PubMed]
    [Google Scholar]
  45. Lecchi S., Allen K. E., Pardo J. P., Mason A. B., Slayman C. W. ( 2005). Conformational changes of yeast plasma membrane H+-ATPase during activation by glucose: role of threonine-912 in the carboxy-terminal tail. Biochemistry 44:16624–16632 [View Article] [PubMed]
    [Google Scholar]
  46. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. ( 1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [View Article] [PubMed]
    [Google Scholar]
  47. Luo G., Samaranayake L. P. ( 2002). Candida glabrata, an emerging fungal pathogen, exhibits superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared with Candida albicans . APMIS 110:601–610 [PubMed] [CrossRef]
    [Google Scholar]
  48. Maresová L., Hosková B., Urbánková E., Chaloupka R., Sychrová H. ( 2010). New applications of pHluorin – measuring intracellular pH of prototrophic yeasts and determining changes in the buffering capacity of strains with affected potassium homeostasis. Yeast 27:317–325 [PubMed]
    [Google Scholar]
  49. Martínez-Muñoz G. A., Kane P. ( 2008). Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319 [View Article] [PubMed]
    [Google Scholar]
  50. Miesenböck G., De Angelis D. A., Rothman J. E. ( 1998). Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195 [PubMed] [CrossRef]
    [Google Scholar]
  51. Miyazaki T., Inamine T., Yamauchi S., Nagayoshi Y., Saijo T., Izumikawa K., Seki M., Kakeya H., Yamamoto Y. & other authors ( 2010). Role of the Slt2 mitogen-activated protein kinase pathway in cell wall integrity and virulence in Candida glabrata . FEMS Yeast Res 10:343–352 [View Article] [PubMed]
    [Google Scholar]
  52. Monk B. C., Perlin D. S. ( 1994). Fungal plasma membrane proton pumps as promising new antifungal targets. Crit Rev Microbiol 20:209–223 [View Article] [PubMed]
    [Google Scholar]
  53. Orij R., Postmus J., Ter Beek A., Brul S., Smits G. J. ( 2009). In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology 155:268–278 [View Article] [PubMed]
    [Google Scholar]
  54. Orij R., Brul S., Smits G. J. ( 2011). Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta 1810:933–944 [View Article] [PubMed]
    [Google Scholar]
  55. Orij R., Urbanus M. L., Vizeacoumar F. J., Giaever G., Boone C., Nislow C., Brul S., Smits G. J. ( 2012). Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae . Genome Biol 13:R80 [View Article]
    [Google Scholar]
  56. Owen D. H., Katz D. F. ( 1999). A vaginal fluid simulant. Contraception 59:91–95 [PubMed] [CrossRef]
    [Google Scholar]
  57. Pappas P. G., Kauffman C. A., Andes D., Benjamin D. K. Jr, Calandra T. F., Edwards J. E. Jr, Filler S. G., Fisher J. F., Kullberg B. J. & other authors ( 2009). Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535 [View Article] [PubMed]
    [Google Scholar]
  58. Peñalva M. A., Arst H. N. Jr ( 2002). Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446 [View Article] [PubMed]
    [Google Scholar]
  59. Peñalva M. A., Tilburn J., Bignell E., Arst H. N. Jr ( 2008). Ambient pH gene regulation in fungi: making connections. Trends Microbiol 16:291–300 [View Article] [PubMed]
    [Google Scholar]
  60. Pineda Rodó A., Váchová L., Palková Z. ( 2012). In vivo determination of organellar pH using a universal wavelength-based confocal microscopy approach. PLoS ONE 7:e33229 [View Article] [PubMed]
    [Google Scholar]
  61. Porta A., Wang Z., Ramon A., Mühlschlegel F. A., Fonzi W. A. ( 2001). Spontaneous second-site suppressors of the filamentation defect of prr1Δ mutants define a critical domain of Rim101p in Candida albicans . Mol Genet Genomics 266:624–631 [View Article] [PubMed]
    [Google Scholar]
  62. Ramos S., Balbín M., Raposo M., Valle E., Pardo L. A. ( 1989). The mechanism of intracellular acidification induced by glucose in Saccharomyces cerevisiae . J Gen Microbiol 135:2413–2422 [PubMed]
    [Google Scholar]
  63. Roetzer A., Gratz N., Kovarik P., Schüller C. ( 2010). Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12:199–216 [PubMed] [CrossRef]
    [Google Scholar]
  64. Roetzer A., Gabaldón T., Schüller C. ( 2011). From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 314:1–9 [PubMed] [CrossRef]
    [Google Scholar]
  65. Sabina J., Brown V. ( 2009). Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot Cell 8:1314–1320 [View Article] [PubMed]
    [Google Scholar]
  66. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  67. Schiestl R. H., Gietz R. D. ( 1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346 [PubMed] [CrossRef]
    [Google Scholar]
  68. Schmidt P. ( 2007). Molecular mechanisms of the human pathogen Candida glabrata involved in the interaction with the host PhD thesis, Georg August University Göttingen; Göttingen, Germany:
    [Google Scholar]
  69. Schmidt P., Walker J., Selway L., Stead D., Yin Z., Enjalbert B., Weig M., Brown A. J. ( 2008). Proteomic analysis of the pH response in the fungal pathogen Candida glabrata . Proteomics 8:534–544 [View Article] [PubMed]
    [Google Scholar]
  70. Shapiro R. S., Robbins N., Cowen L. E. ( 2011). Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267 [View Article] [PubMed]
    [Google Scholar]
  71. Simões T., Teixeira M. C., Fernandes A. R., Sá-Correia I. ( 2003). Adaptation of Saccharomyces cerevisiae to the herbicide 2,4-dichlorophenoxyacetic acid, mediated by Msn2p- and Msn4p-regulated genes: important role of SPI1. Appl Environ Microbiol 69:4019–4028 [View Article] [PubMed]
    [Google Scholar]
  72. Simões T., Mira N. P., Fernandes A. R., Sá-Correia I. ( 2006). The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 72:7168–7175 [PubMed] [CrossRef]
    [Google Scholar]
  73. Sobel J. D. ( 2007). Vulvovaginal candidosis. Lancet 369:1961–1971 [View Article] [PubMed]
    [Google Scholar]
  74. Sorgo A. G., Heilmann C. J., Dekker H. L., Brul S., de Koster C. G., Klis F. M. ( 2010). Mass spectrometric analysis of the secretome of Candida albicans . Yeast 27:661–672 [PubMed] [CrossRef]
    [Google Scholar]
  75. Soteropoulos P., Vaz T., Santangelo R., Paderu P., Huang D. Y., Tamás M. J., Perlin D. S. ( 2000). Molecular characterization of the plasma membrane H+-ATPase, an antifungal target in Cryptococcus neoformans . Antimicrob Agents Chemother 44:2349–2355 [PubMed] [CrossRef]
    [Google Scholar]
  76. Stewart E., Hawser S., Gow N. A. ( 1989). Changes in internal and external pH accompanying growth of Candida albicans: studies of non-dimorphic variants. Arch Microbiol 151:149–153 [View Article] [PubMed]
    [Google Scholar]
  77. Thevelein J. M. ( 1991). Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5:1301–1307 [View Article] [PubMed]
    [Google Scholar]
  78. Ueno K., Matsumoto Y., Uno J., Sasamoto K., Sekimizu K., Kinjo Y., Chibana H. ( 2011). Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS ONE 6:e24759 [PubMed] [CrossRef]
    [Google Scholar]
  79. Ullah A., Orij R., Brul S., Smits G. J. ( 2012). Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae . Appl Environ Microbiol 78:8377–8387 [View Article]
    [Google Scholar]
  80. Vylkova S., Carman A. J., Danhof H. A., Collette J. R., Zhou H. J., Lorenz M. C. ( 2011). The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. mBio 2:e00055–e11 [View Article] [PubMed]
    [Google Scholar]
  81. Walker G. M. ( 1998). Yeast Physiology and Biotechnology Chichester: Wiley;
    [Google Scholar]
  82. Walther A., Wendland J. ( 2003). An improved transformation protocol for the human fungal pathogen Candida albicans . Curr Genet 42:339–343 [View Article] [PubMed]
    [Google Scholar]
  83. Warringer J., Blomberg A. ( 2003). Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae . Yeast 20:53–67 [View Article] [PubMed]
    [Google Scholar]
  84. Whiteway M., Bachewich C. ( 2007). Morphogenesis in Candida albicans . Annu Rev Microbiol 61:529–553 [View Article] [PubMed]
    [Google Scholar]
  85. Young B. P., Shin J. J. H., Orij R., Chao J. T., Li S. C., Guan X. L., Khong A., Jan E., Wenk M. R. & other authors ( 2010). Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science 329:1085–1088 [View Article] [PubMed]
    [Google Scholar]
  86. Zhou J., Liu L., Chen J. ( 2011). Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. J Appl Microbiol 110:44–53 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063610-0
Loading
/content/journal/micro/10.1099/mic.0.063610-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error