1887

Abstract

Several mycoplasma species have been shown to form biofilms that confer resistance to antimicrobials and which may affect the host immune system, thus making treatment and eradication of the pathogens difficult. The present study shows that the biofilms formed by two strains of the human pathogen differ quantitatively and qualitatively. Compared with strain UAB PO1, strain M129 grows well but forms biofilms that are less robust, with towers that are less smooth at the margins. A polysaccharide containing -acetylglucosamine is secreted by M129 into the culture medium but found in tight association with the cells of UAB PO1. The polysaccharide may have a role in biofilm formation, contributing to differences in virulence, chronicity and treatment outcome between strains of . The UAB PO1 genome was found to be that of a type 2 strain of , whereas M129 is type 1. Examination of other isolates suggests that the robustness of the biofilm correlates with the strain type.

Funding
This study was supported by the:
  • National Institutes of Health (Award AI64848 and AI63909)
  • NIH National Center for Research Resources (Award 5UL1 RR025777-03)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064782-0
2013-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/737.html?itemId=/content/journal/micro/10.1099/mic.0.064782-0&mimeType=html&fmt=ahah

References

  1. Abdi-Ali A., Mohammadi-Mehr M., Agha Alaei Y.( 2006). Bactericidal activity of various antibiotics against biofilm-producing Pseudomonas aeruginosa. Int J Antimicrob Agents 27:196–200 [View Article] [PubMed]
    [Google Scholar]
  2. Atkinson T. P., Balish M. F., Waites K. B.( 2008). Epidemiology, clinical manifestations, pathogenesis and laboratory detection of Mycoplasma pneumoniae infections. FEMS Microbiol Rev 32:956–973 [View Article] [PubMed]
    [Google Scholar]
  3. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M.& other authors ( 2008). The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75–89 [View Article] [PubMed]
    [Google Scholar]
  4. Balish M. F., Santurri R. T., Ricci A. M., Lee K. K., Krause D. C.( 2003). Localization of Mycoplasma pneumoniae cytadherence-associated protein HMW2 by fusion with green fluorescent protein: implications for attachment organelle structure. Mol Microbiol 47:49–60 [View Article] [PubMed]
    [Google Scholar]
  5. Birol I., Jackman S. D., Nielsen C. B., Qian J. Q., Varhol R., Stazyk G., Morin R. D., Zhao Y., Hirst M.& other authors ( 2009). De novo transcriptome assembly with ABySS. Bioinformatics 25:2872–2877 [View Article] [PubMed]
    [Google Scholar]
  6. Bolland J. R., Simmons W. L., Daubenspeck J. M., Dybvig K.( 2012). Mycoplasma polysaccharide protects against complement. Microbiology 158:1867–1873 [View Article] [PubMed]
    [Google Scholar]
  7. Branda S. S., Vik S., Friedman L., Kolter R.( 2005). Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [View Article] [PubMed]
    [Google Scholar]
  8. Campos M. A., Vargas M. A., Regueiro V., Llompart C. M., Albertí S., Bengoechea J. A.( 2004). Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107–7114 [View Article] [PubMed]
    [Google Scholar]
  9. Conlon K. M., Humphreys H., O’Gara J. P.( 2002). icaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis. J Bacteriol 184:4400–4408 [View Article] [PubMed]
    [Google Scholar]
  10. Costerton J. W., Stewart P. S., Greenberg E. P.( 1999). Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [View Article] [PubMed]
    [Google Scholar]
  11. Daims H., Lücker S., Wagner M.( 2006). daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 8:200–213 [View Article] [PubMed]
    [Google Scholar]
  12. Darling A. E., Mau B., Perna N. T.( 2010). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147 [View Article] [PubMed]
    [Google Scholar]
  13. Daubenspeck J. M., Bolland J. R., Luo W., Simmons W. L., Dybvig K.( 2009). Identification of exopolysaccharide-deficient mutants of Mycoplasma pulmonis. Mol Microbiol 72:1235–1245 [View Article] [PubMed]
    [Google Scholar]
  14. Davidson M. K., Lindsey J. R., Parker R. F., Tully J. G., Cassell G. H.( 1988). Differences in virulence for mice among strains of Mycoplasma pulmonis. Infect Immun 56:2156–2162 [PubMed]
    [Google Scholar]
  15. Donlan R. M.( 2001). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392 [View Article] [PubMed]
    [Google Scholar]
  16. García-Castillo M., Morosini M.-I., Gálvez M., Baquero F., del Campo R., Meseguer M.-A.( 2008). Differences in biofilm development and antibiotic susceptibility among clinical Ureaplasma urealyticum and Ureaplasma parvum isolates. J Antimicrob Chemother 62:1027–1030 [View Article] [PubMed]
    [Google Scholar]
  17. Halbedel S., Busse J., Schmidl S. R., Stülke J.( 2006). Regulatory protein phosphorylation in Mycoplasma pneumoniae. A PP2C-type phosphatase serves to dephosphorylate HPr(Ser-P). J Biol Chem 281:26253–26259 [View Article] [PubMed]
    [Google Scholar]
  18. Hoyle B. D., Jass J., Costerton J. W.( 1990). The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother 26:1–5 [View Article] [PubMed]
    [Google Scholar]
  19. Itoh Y., Wang X., Hinnebusch B. J., Preston J. F. III, Romeo T.( 2005). Depolymerization of β-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387 [View Article] [PubMed]
    [Google Scholar]
  20. Kelley D. R., Schatz M. C., Salzberg S. L.( 2010). Quake: quality-aware detection and correction of sequencing errors. Genome Biol 11:R116 [View Article] [PubMed]
    [Google Scholar]
  21. Kornspan J. D., Tarshis M., Rottem S.( 2011). Adhesion and biofilm formation of Mycoplasma pneumoniae on an abiotic surface. Arch Microbiol 193:833–836 [View Article] [PubMed]
    [Google Scholar]
  22. Krause D. C.( 1998). Mycoplasma pneumoniae cytadherence: organization and assembly of the attachment organelle. Trends Microbiol 6:15–18 [View Article] [PubMed]
    [Google Scholar]
  23. Kropec A., Maira-Litran T., Jefferson K. K., Grout M., Cramton S. E., Götz F., Goldmann D. A., Pier G. B.( 2005). Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect Immun 73:6868–6876 [View Article] [PubMed]
    [Google Scholar]
  24. Lasa I.( 2006). Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9:21–28 [PubMed]
    [Google Scholar]
  25. Li H., Durbin R.( 2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760 [View Article] [PubMed]
    [Google Scholar]
  26. McAuliffe L., Ellis R. J., Miles K., Ayling R. D., Nicholas R. A. J.( 2006). Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 152:913–922 [View Article] [PubMed]
    [Google Scholar]
  27. Mohamed J. A., Huang D. B.( 2007). Biofilm formation by enterococci. J Med Microbiol 56:1581–1588 [View Article] [PubMed]
    [Google Scholar]
  28. Musatovova O., Kannan T. R., Baseman J. B.( 2008). Genomic analysis reveals Mycoplasma pneumoniae repetitive element 1-mediated recombination in a clinical isolate. Infect Immun 76:1639–1648 [View Article] [PubMed]
    [Google Scholar]
  29. Musatovova O., Kannan T. R., Baseman J. B.( 2012). Mycoplasma pneumoniae large DNA repetitive elements RepMP1 show type specific organization among strains. PLoS ONE 7:e47625 [View Article] [PubMed]
    [Google Scholar]
  30. Nielsen C. B., Jackman S. D., Birol I., Jones S. J.( 2009). ABySS-Explorer: visualizing genome sequence assemblies. IEEE Trans Vis Comput Graph 15:881–888 [View Article] [PubMed]
    [Google Scholar]
  31. Nilsson A. C., Björkman P., Welinder-Olsson C., Widell A., Persson K.( 2010). Clinical severity of Mycoplasma pneumoniae (MP) infection is associated with bacterial load in oropharyngeal secretions but not with MP genotype. BMC Infect Dis 10:39 [View Article] [PubMed]
    [Google Scholar]
  32. Proft T., Hilbert H., Layh-Schmitt G., Herrmann R.( 1995). The proline-rich P65 protein of Mycoplasma pneumoniae is a component of the Triton X-100-insoluble fraction and exhibits size polymorphism in the strains M129 and FH. J Bacteriol 177:3370–3378 [PubMed]
    [Google Scholar]
  33. Quinlan A. R., Hall I. M.( 2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842 [View Article] [PubMed]
    [Google Scholar]
  34. Schmidl S. R., Gronau K., Hames C., Busse J., Becher D., Hecker M., Stülke J.( 2010). The stability of cytadherence proteins in Mycoplasma pneumoniae requires activity of the protein kinase PrkC. Infect Immun 78:184–192 [View Article] [PubMed]
    [Google Scholar]
  35. Simmons W. L., Dybvig K.( 2003). The Vsa proteins modulate susceptibility of Mycoplasma pulmonis to complement killing, hemadsorption, and adherence to polystyrene. Infect Immun 71:5733–5738 [View Article] [PubMed]
    [Google Scholar]
  36. Simmons W. L., Dybvig K.( 2007). Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. Infect Immun 75:3696–3699 [View Article] [PubMed]
    [Google Scholar]
  37. Simmons W. L., Dybvig K.( 2009). Mycoplasma biofilms ex vivo and in vivo. FEMS Microbiol Lett 295:77–81 [View Article] [PubMed]
    [Google Scholar]
  38. Simmons W. L., Bolland J. R., Daubenspeck J. M., Dybvig K.( 2007). A stochastic mechanism for biofilm formation by Mycoplasma pulmonis. J Bacteriol 189:1905–1913 [View Article] [PubMed]
    [Google Scholar]
  39. Slifkin M., Cumbie R.( 1988). Congo red as a fluorochrome for the rapid detection of fungi. J Clin Microbiol 26:827–830 [PubMed]
    [Google Scholar]
  40. Spuesens E. B. M., Oduber M., Hoogenboezem T., Sluijter M., Hartwig N. G., van Rossum A. M., Vink C.( 2009). Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae. Microbiology 155:2182–2196 [View Article] [PubMed]
    [Google Scholar]
  41. Su C. J., Chavoya A., Dallo S. F., Baseman J. B.( 1990). Sequence divergency of the cytadhesin gene of Mycoplasma pneumoniae. Infect Immun 58:2669–2674 [PubMed]
    [Google Scholar]
  42. Sutherland I. W.( 2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9 [PubMed]
    [Google Scholar]
  43. Toledo-Arana A., Merino N., Vergara-Irigaray M., Débarbouillé M., Penadés J. R., Lasa I.( 2005). Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187:5318–5329 [View Article] [PubMed]
    [Google Scholar]
  44. Tully J. G.( 1983). New laboratory techniques for isolation of Mycoplasma pneumoniae. Yale J Biol Med 56:511–515 [PubMed]
    [Google Scholar]
  45. Ursi D., Ieven M., van Bever H., Quint W., Niesters H. G., Goossens H.( 1994). Typing of Mycoplasma pneumoniae by PCR-mediated DNA fingerprinting. J Clin Microbiol 32:2873–2875 [PubMed]
    [Google Scholar]
  46. Vu B., Chen M., Crawford R. J., Ivanova E. P.( 2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554 [View Article] [PubMed]
    [Google Scholar]
  47. Waites K. B., Balish M. F., Atkinson T. P.( 2008). New insights into the pathogenesis and detection of Mycoplasma pneumoniae infections. Future Microbiol 3:635–648 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064782-0
Loading
/content/journal/micro/10.1099/mic.0.064782-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error