1887

Abstract

ToxT is the central regulatory protein involved in activation of the main virulence genes in . We have identified transposon insertions in central metabolism genes, whose disruption increases transcription. These disrupted genes encode the primary respiration-linked sodium pump (NADH : ubiquinone oxidoreductase or NQR) and certain tricarboxylic acid (TCA) cycle enzymes. Observations made following stimulation of respiration in the mutant or chemical inhibition of NQR activity in the TCA cycle mutants led to the hypothesis that NQR affects transcription via the TCA cycle. That transcription increased when the growth medium was supplemented with citrate, but decreased with oxaloacetate, focused our attention on the TCA cycle substrate acetyl-CoA and its non-TCA cycle metabolism. Indeed, both the and the TCA cycle mutants increased acetate excretion. A similar correlation between acetate excretion and transcription was observed in a mutant and upon amino acid (NRES) supplementation. As acetate and its tendency to decrease pH exerted no strong effect on transcription, and because disruption of the major acetate excretion pathway increased transcription, we propose that transcription is regulated by either acetyl-CoA or some close derivative.

Funding
This study was supported by the:
  • National Institutes of Health (Award GM066130 and AI-063121-02)
  • Undergraduate Research, Innovation, Scholarship & Creativity Fund
  • OSU Howard Hughes Medical Institute Summer Undergraduate Research Program
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064865-0
2013-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/792.html?itemId=/content/journal/micro/10.1099/mic.0.064865-0&mimeType=html&fmt=ahah

References

  1. Barquera B., Hellwig P., Zhou W., Morgan J. E., Häse C. C., Gosink K. K., Nilges M., Bruesehoff P. J., Roth A. & other authors ( 2002). Purification and characterization of the recombinant Na+-translocating NADH : quinone oxidoreductase from Vibrio cholerae . Biochemistry 41:3781–3789 [View Article] [PubMed]
    [Google Scholar]
  2. Brown T. D., Jones-Mortimer M. C., Kornberg H. L. ( 1977). The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli . J Gen Microbiol 102:327–336 [PubMed] [CrossRef]
    [Google Scholar]
  3. Cherepanov P. P., Wackernagel W. ( 1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14 [View Article] [PubMed]
    [Google Scholar]
  4. Chubiz L. M., Rao C. V. ( 2010). Aromatic acid metabolites of Escherichia coli K-12 can induce the marRAB operon. J Bacteriol 192:4786–4789 [View Article] [PubMed]
    [Google Scholar]
  5. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article] [PubMed]
    [Google Scholar]
  6. Davies B. W., Bogard R. W., Young T. S., Mekalanos J. J. ( 2012). Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–370 [View Article] [PubMed]
    [Google Scholar]
  7. Dehio C., Meyer M. ( 1997). Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli . J Bacteriol 179:538–540 [PubMed]
    [Google Scholar]
  8. Delbaere L. T. J., Sudom A. M., Prasad L., Leduc Y., Goldie H. ( 2004). Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. Biochim Biophys Acta 1697:271–278 [View Article] [PubMed]
    [Google Scholar]
  9. Deutscher J. ( 2008). The mechanisms of carbon catabolite repression in bacteria. Curr Opin Microbiol 11:87–93 [View Article] [PubMed]
    [Google Scholar]
  10. Dhamdhere G., Zgurskaya H. I. ( 2010). Metabolic shutdown in Escherichia coli cells lacking the outer membrane channel TolC. Mol Microbiol 77:743–754 [View Article] [PubMed]
    [Google Scholar]
  11. DiRita V. J., Parsot C., Jander G., Mekalanos J. J. ( 1991). Regulatory cascade controls virulence in Vibrio cholerae . Proc Natl Acad Sci U S A 88:5403–5407 [View Article] [PubMed]
    [Google Scholar]
  12. Donnenberg M. S., Kaper J. B. ( 1991). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317 [PubMed]
    [Google Scholar]
  13. Gardel C. L., Mekalanos J. J. ( 1994). Regulation of cholera toxin by temperature, pH, and osmolarity. Methods Enzymol 235:517–526 [View Article] [PubMed]
    [Google Scholar]
  14. Gardel C. L., Mekalanos J. J. ( 1996). Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64:2246–2255 [PubMed]
    [Google Scholar]
  15. Görke B., Stülke J. ( 2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624 [View Article] [PubMed]
    [Google Scholar]
  16. Guccione E., del Rocio Leon-Kempis M., Pearson B. M., Hitchin E., Mulholland F., van Diemen P. M., Stevens M. P., Kelly D. J. ( 2008). Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol 69:77–93 [View Article] [PubMed]
    [Google Scholar]
  17. Häse C. C. ( 2001). Analysis of the role of flagellar activity in virulence gene expression in Vibrio cholerae . Microbiology 147:831–837 [PubMed]
    [Google Scholar]
  18. Häse C. C., Mekalanos J. J. ( 1998). TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae . Proc Natl Acad Sci U S A 95:730–734 [View Article] [PubMed]
    [Google Scholar]
  19. Häse C. C., Mekalanos J. J. ( 1999). Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae . Proc Natl Acad Sci U S A 96:3183–3187 [View Article] [PubMed]
    [Google Scholar]
  20. Hu L. I., Lima B. P., Wolfe A. J. ( 2010). Bacterial protein acetylation: the dawning of a new age. Mol Microbiol 77:15–21 [View Article] [PubMed]
    [Google Scholar]
  21. Inada T., Kimata K., Aiba H. ( 1996). Mechanism responsible for glucose–lactose diauxie in Escherichia coli: challenge to the cAMP model. Genes Cells 1:293–301 [View Article] [PubMed]
    [Google Scholar]
  22. Koronakis V., Eswaran J., Hughes C. ( 2004). Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489 [View Article] [PubMed]
    [Google Scholar]
  23. Kovacikova G., Skorupski K. ( 2001). Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 41:393–407 [View Article] [PubMed]
    [Google Scholar]
  24. Kovacikova G., Lin W., Skorupski K. ( 2010). The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol 192:4181–4191 [View Article] [PubMed]
    [Google Scholar]
  25. Lakshmi T. M., Helling R. B. ( 1976). Selection for citrate synthase deficiency in icd mutants of Escherichia coli . J Bacteriol 127:76–83 [PubMed]
    [Google Scholar]
  26. Leigh J. A., Dodsworth J. A. ( 2007). Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377 [View Article] [PubMed]
    [Google Scholar]
  27. Lima B. P., Antelmann H., Gronau K., Chi B. K., Becher D., Brinsmade S. R., Wolfe A. J. ( 2011). Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol Microbiol 81:1190–1204 [View Article] [PubMed]
    [Google Scholar]
  28. Lima B. P., Thanh Huyen T. T., Bäsell K., Becher D., Antelmann H., Wolfe A. J. ( 2012). Inhibition of acetyl phosphate-dependent transcription by an acetylatable lysine on RNA polymerase. J Biol Chem 287:32147–32160 [View Article] [PubMed]
    [Google Scholar]
  29. Mascher T., Helmann J. D., Unden G. ( 2006). Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938 [View Article] [PubMed]
    [Google Scholar]
  30. Matson J. S., Withey J. H., DiRita V. J. ( 2007). Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 75:5542–5549 [View Article] [PubMed]
    [Google Scholar]
  31. Metcalf W. W., Jiang W., Daniels L. L., Kim S. K., Haldimann A., Wanner B. L. ( 1996). Conditionally replicative and conjugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [View Article] [PubMed]
    [Google Scholar]
  32. Miller V. L., Mekalanos J. J. ( 1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583 [PubMed]
    [Google Scholar]
  33. Minato Y., Siefken R. L., Häse C. C. ( 2011). TolC affects virulence gene expression in Vibrio cholerae . J Bacteriol 193:5850–5852 [View Article] [PubMed]
    [Google Scholar]
  34. Nye M. B., Pfau J. D., Skorupski K., Taylor R. K. ( 2000). Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol 182:4295–4303 [View Article] [PubMed]
    [Google Scholar]
  35. Patra T., Koley H., Ramamurthy T., Ghose A. C., Nandy R. K. ( 2012). The Entner-Doudoroff pathway is obligatory for gluconate utilization and contributes to the pathogenicity of Vibrio cholerae . J Bacteriol 194:3377–3385 [View Article] [PubMed]
    [Google Scholar]
  36. Postle K., Vakharia H. ( 2000). TolC, a macromolecular periplasmic ‘chunnel’. Nat Struct Biol 7:527–530 [View Article] [PubMed]
    [Google Scholar]
  37. Reid C. J., Poole P. S. ( 1998). Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum . J Bacteriol 180:2660–2669 [PubMed]
    [Google Scholar]
  38. Rose I. A., Grunberg-Manago M., Korey S. R., Ochoa S. ( 1954). Enzymatic phosphorylation of acetate. J Biol Chem 211:737–756 [PubMed]
    [Google Scholar]
  39. Rosner J. L., Martin R. G. ( 2009). An excretory function for the Escherichia coli outer membrane pore TolC: upregulation of marA and soxS transcription and Rob activity due to metabolites accumulated in tolC mutants. J Bacteriol 191:5283–5292 [View Article] [PubMed]
    [Google Scholar]
  40. Rubin E. J., Akerley B. J., Novik V. N., Lampe D. J., Husson R. N., Mekalanos J. J. ( 1999). In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96:1645–1650 [View Article] [PubMed]
    [Google Scholar]
  41. Santos M. R., Cosme A. M., Becker J. D., Medeiros J. M., Mata M. F., Moreira L. M. ( 2010). Absence of functional TolC protein causes increased stress response gene expression in Sinorhizobium meliloti . BMC Microbiol 10:180 [View Article] [PubMed]
    [Google Scholar]
  42. Scheu P. D., Witan J., Rauschmeier M., Graf S., Liao Y. F., Ebert-Jung A., Basché T., Erker W., Unden G. ( 2012). CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo . J Bacteriol 194:636–645 [View Article] [PubMed]
    [Google Scholar]
  43. Skorupski K., Taylor R. K. ( 1997). Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol 25:1003–1009 [View Article] [PubMed]
    [Google Scholar]
  44. Stonehouse E. A., Hulbert R. R., Nye M. B., Skorupski K., Taylor R. K. ( 2011). H-NS binding and repression of the ctx promoter in Vibrio cholerae . J Bacteriol 193:979–988 [View Article] [PubMed]
    [Google Scholar]
  45. Thao S., Escalante-Semerena J. C. ( 2011). Control of protein function by reversible Nϵ-lysine acetylation in bacteria. Curr Opin Microbiol 14:200–204 [View Article] [PubMed]
    [Google Scholar]
  46. Wolfe A. J. ( 2005). The acetate switch. Microbiol Mol Biol Rev 69:12–50 [View Article] [PubMed]
    [Google Scholar]
  47. Wolfe A. J. ( 2010). Physiologically relevant small phosphodonors link metabolism to signal transduction. Curr Opin Microbiol 13:204–209 [View Article] [PubMed]
    [Google Scholar]
  48. Yamamoto S., Izumiya H., Morita M., Arakawa E., Watanabe H. ( 2009). Application of λ Red recombination system to Vibrio cholerae genetics: simple methods for inactivation and modification of chromosomal genes. Gene 438:57–64 [View Article] [PubMed]
    [Google Scholar]
  49. Yu B. J., Sung B. H., Lee J. Y., Son S. H., Kim M. S., Kim S. C. ( 2006). sucAB and sucCD are mutually essential genes in Escherichia coli . FEMS Microbiol Lett 254:245–250 [View Article] [PubMed]
    [Google Scholar]
  50. Zgurskaya H. I., Krishnamoorthy G., Ntreh A., Lu S. ( 2011). Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria. Front Microbiol 2:189 [View Article] [PubMed]
    [Google Scholar]
  51. Zientz E., Bongaerts J., Unden G. ( 1998). Fumarate regulation of gene expression in Escherichia coli by the DcuSR (dcuSR genes) two-component regulatory system. J Bacteriol 180:5421–5425 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064865-0
Loading
/content/journal/micro/10.1099/mic.0.064865-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error