1887

Abstract

A soil bacterium, designated strain no. 27, was found to produce aflatoxin-production inhibitors. The strain was identified as a species of the genus , and was found to be closely related to Two diketopiperazines, cyclo(-Ala–-Pro) and cyclo(-Val–-Pro), were isolated from the bacterial culture filtrate as main active components. These compounds inhibited aflatoxin production of and in liquid medium at concentrations of several hundred µM without affecting fungal growth. Both inhibitors inhibited production of norsorolinic acid, a biosynthetic intermediate involved in an early step of the aflatoxin biosynthetic pathway, and reduced the mRNA level of , which is a gene encoding a key regulatory protein necessary for the expression of aflatoxin-biosynthetic enzymes. These results indicated that the inhibitors targets are present in early regulatory steps leading to AflR expression. Co-culture of strain no. 27 with aflatoxigenic fungi in liquid medium effectively suppressed aflatoxin production of the fungus without affecting fungal growth. Furthermore, application of the bacterial cells to peanuts in laboratory experiments and at a farmer’s warehouse in Thailand by dipping peanuts in the bacterial cell suspension strongly inhibited aflatoxin accumulation. The inhibitory effect was dependent on bacterial cell numbers. These results indicated that strain no. 27 may be a practically effective biocontrol agent for aflatoxin control.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.065813-0
2013-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/902.html?itemId=/content/journal/micro/10.1099/mic.0.065813-0&mimeType=html&fmt=ahah

References

  1. Abbas H. K., Wilkinson J. R., Zablotowicz R. M., Accinelli C., Abel C. A., Bruns H. A., Weaver M. A. ( 2009). Ecology of Aspergillus flavus, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn. Toxin Rev 28:142–153 [View Article]
    [Google Scholar]
  2. Abbas H. K., Weaver M. A., Horn B. W., Carbone I., Monacell J. T., Shier W. T. ( 2011). Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Rev 30:59–70 [CrossRef]
    [Google Scholar]
  3. Bianchini A., Bullerman L. B. ( 2010). Biological control of molds and mycotoxins in foods. Mycotoxin Prevention and Control in Agriculture1–16ACS symposium series Appell M., Kendra D., Trucksess M. Washington, DC: American Chemical Society; [View Article]
    [Google Scholar]
  4. Brown R. L., Cotty P. J., Cleveland T. E. ( 1991). Reduction in aflatoxin content of maize by atoxigenic strains of Aspergillus flavus . J Food Prot 54:623–626
    [Google Scholar]
  5. Campbell J., Lin Q., Geske G. D., Blackwell H. E. ( 2009). New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chem Biol 4:1051–1059 [View Article][PubMed]
    [Google Scholar]
  6. Cary J. W., Rajasekaran K., Brown R. L., Luo M., Chen Z. Y., Bhatnagar D. ( 2011). Developing resistance to aflatoxin in maize and cottonseed. Toxins (Basel) 3:678–696 [View Article][PubMed]
    [Google Scholar]
  7. Cotty, P. J. (1992).Aspergillus flavus
  8. Cotty P. J. ( 1994). Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology 84:1270–1277 [View Article]
    [Google Scholar]
  9. Dorner J. W., Cole R. J. ( 2002). Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J Stored Prod Res 38:329–339 [View Article]
    [Google Scholar]
  10. Duangpatra, J. & Pumdeeying, N. (2002).The Proceedings of the Sixteenth Thailand National Peanut Meeting 2002, May 1–3, 2002,
  11. Duangpatra, J., Chompreeda, P., Chinaputhi, A. & Promchote, P. (2005).Summary International Peanut Conference 2005, Prospects and Emerging Opportunities for Peanut Quality and Utilization Technology January 9–12, 2005,
  12. Ehrlich K. C., Kobbeman K., Montalbano B. G., Cotty P. J. ( 2007). Aflatoxin-producing Aspergillus species from Thailand. Int J Food Microbiol 114:153–159 [View Article][PubMed]
    [Google Scholar]
  13. Gautschi M., Schmid J. P., Peppard T. L., Ryan T. P., Tuorto R. M., Yang X. ( 1997). Chemical characterization of diketopiperazines in beer. J Agric Food Chem 45:3183–3189 [View Article]
    [Google Scholar]
  14. Guan S., Ji C., Zhou T., Li J., Ma Q., Niu T. ( 2008). Aflatoxin B1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. Int J Mol Sci 9:1489–1503 [View Article][PubMed]
    [Google Scholar]
  15. Haskard C. A., Binnion C., Ahokas J. ( 2000). Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem Biol Interact 128:39–49 [View Article][PubMed]
    [Google Scholar]
  16. Haskard C. A., El-Nezami H. S., Kankaanpää P. E., Salminen S., Ahokas J. T. ( 2001). Surface binding of aflatoxin B1 by lactic acid bacteria. Appl Environ Microbiol 67:3086–3091 [View Article][PubMed]
    [Google Scholar]
  17. Holden M. T. G., Ram Chhabra S., de Nys R., Stead P., Bainton N. J., Hill P. J., Manefield M., Kumar N., Labatte M. et al. ( 1999). Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254–1266 [View Article][PubMed]
    [Google Scholar]
  18. Holmes R. A., Boston R. S., Payne G. A. ( 2008). Diverse inhibitors of aflatoxin biosynthesis. Appl Microbiol Biotechnol 78:559–572 [View Article][PubMed]
    [Google Scholar]
  19. Hua S. S. T., Baker J. L., Flores-Espiritu M. ( 1999). Interactions of saprophytic yeasts with a nor mutant of Aspergillus flavus . Appl Environ Microbiol 65:2738–2740[PubMed]
    [Google Scholar]
  20. Jayashree T., Subramanyam C. ( 1999). Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Lett Appl Microbiol 28:189–193 [View Article][PubMed]
    [Google Scholar]
  21. Jermnak U., Yoshinari T., Sugiyama Y., Tsuyuki R., Nagasawa H., Sakuda S. ( 2012). Isolation of methyl syringate as a specific aflatoxin production inhibitor from the essential oil of Betula alba and aflatoxin production inhibitory activities of its related compounds. Int J Food Microbiol 153:339–344 [View Article][PubMed]
    [Google Scholar]
  22. Kodaira Y. ( 1962). Toxic substances to insects, produced by Aspergillus ochraceus and Oospra destructor . Agric Biol Chem 25:261–262 [CrossRef]
    [Google Scholar]
  23. Li X., Dobretsov S., Xu Y., Xiao X., Hung O. S., Qian P. Y. ( 2006). Antifouling diketopiperazines produced by deep-sea bacterium, Streptomyces fungicidicus . Biofouling 22:187–194 [View Article][PubMed]
    [Google Scholar]
  24. Liu Y., Wu F. ( 2010). Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environ Health Perspect 118:818–824 [View Article][PubMed]
    [Google Scholar]
  25. Liu C., Yang X. Q., Ding Z. T., Zhao L. X., Cao Y. R., Xu L. H., Yang Y. B. ( 2011). Cyclodipeptides from the secondary metabolites of two novel Actinomycetes. Chin J Nat Med 9:78–80
    [Google Scholar]
  26. Mahoney N., Molyneux R. J. ( 2004). Phytochemical inhibition of aflatoxigenicity in Aspergillus flavus by constituents of walnut (Juglans regia). J Agric Food Chem 52:1882–1889 [View Article][PubMed]
    [Google Scholar]
  27. Munimbazi C., Bullerman L. B. ( 1997). Inhibition of aflatoxin production of Aspergillus parasiticus NRRL 2999 by Bacillus pumilus . Mycopathologia 140:163–169 [View Article]
    [Google Scholar]
  28. Norton N. R. ( 1997). Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus . Phytopathology 87:814–821 [View Article]
    [Google Scholar]
  29. Oliveira C. M., Silva G. H., Regasini L. O., Zanardi L. M., Evangelista A. H., Young M. C., Bolzani V. S., Araujo A. R. ( 2009). Bioactive metabolites produced by Penicillium sp. 1 and sp. 2, two endophytes associated with Alibertia macrophylla (Rubiaceae). Z Naturforsch C 64:824–830[PubMed] [CrossRef]
    [Google Scholar]
  30. Ortiz-Castro R., Díaz-Pérez C., Martínez-Trujillo M., del Río R. E., Campos-García J., López-Bucio J. ( 2011). Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci U S A 108:7253–7258 [View Article][PubMed]
    [Google Scholar]
  31. Palumbo J. D., Baker J. L., Mahoney N. E. ( 2006). Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb Ecol 52:45–52 [View Article][PubMed]
    [Google Scholar]
  32. Palumbo J. D., O’keeffe T. L., Abbas H. K. ( 2008). Microbial interactions with mycotoxigenic fungi and mycotoxins. Toxin Rev 27:261–285 [View Article]
    [Google Scholar]
  33. Paster N., Droby S., Chalutz E., Menasherov M., Nitzan R., Wilson C. L. ( 1993). Evaluation of potential of the yeast Pichia guilliermondii as a biocontrol agent against Aspergillus flavus and fungi of stored soya beans. Mycol Res 97:1201–1206 [View Article]
    [Google Scholar]
  34. Peltonen K., el-Nezami H., Haskard C., Ahokas J., Salminen S. ( 2001). Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J Dairy Sci 84:2152–2156 [View Article][PubMed]
    [Google Scholar]
  35. Pickenhagen W., Dietrich P., Keil B., Polonsky J., Nouaille F., Lederer E. ( 1975). Identification of the bitter principle of cocoa. Helv Chim Acta 58:1078–1086 [View Article][PubMed]
    [Google Scholar]
  36. Qi S. H., Xu Y., Gao J., Qian P. Y., Zhang S. ( 2009). Antibacterial and antilarval compounds from marine bacterium Pseudomonas rhizosphaerae . Ann Microbiol 59:229–233 [View Article]
    [Google Scholar]
  37. Reddy K. R. N., Reddy C. S., Muralidharan K. ( 2009). Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Contr 20:173–178 [View Article]
    [Google Scholar]
  38. Reddy K. R. N., Farhana N. I., Salleh B., Oliveira C. A. F. ( 2010). Microbiological control of mycotoxins: present status and future concerns. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology vol. 21078–1086 Mendez-Vilas A. Badajoz: Formatex;
    [Google Scholar]
  39. Ryan R. P., Monchy S., Cardinale M., Taghavi S., Crossman L., Avison M. B., Berg G., van der Lelie D., Dow J. M. ( 2009). The versatility and adaptation of bacteria from the genus Sternotrophomonas . Nat Rev Microbiol 7:514–525 [View Article][PubMed]
    [Google Scholar]
  40. Sakuda S. ( 2010). Mycotoxin production inhibitors from natural products. Mycotoxins 60:79–86 [View Article]
    [Google Scholar]
  41. Schmidtz F. J., Vanderah D. J., Hollenbeak K. H., Enwall C. E. L., Gopichand Y., SenGupta P. K., Hossain M. B., Van der Helm D. ( 1983). Metabolites from the marine sponge Tedania ignis. A new atisanediol and several known diketopiperazines. J Org Chem 48:3941–3945 [View Article]
    [Google Scholar]
  42. Sukharomana S., Dobkuntod B. ( 2003). Peanut in the Thai food system: a macro perspective. Peanut in local and global food systems series report No. 8127 Rhoades R. E., Nazarea V. Athens, Georgia: University of Georgia;
    [Google Scholar]
  43. Taylor W. J., Draughon F. A. ( 2001). Nannocystis exedens: a potential biocompetitive agent against Aspergillus flavus and Aspergillus parasiticus . J Food Prot 64:1030–1034[PubMed]
    [Google Scholar]
  44. Ten L. N., Stepanichenko N. N., Mukhamedzhanov S. Z., Khotyanovich A. V. ( 1983). Action of tricyclazole on the biosynthesis of melanin in some fungi of the genus Verticillium . Chem Nat Compd 19:384–385 [View Article]
    [Google Scholar]
  45. Teniola O. D., Addo P. A., Brost I. M., Farber P., Jany K. D., Alberts J. F., Vanzyl W. H., Steyn P. S., Holzapfel W. H. ( 2005). Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T . Int J Food Microbiol 105:111–117 [View Article][PubMed]
    [Google Scholar]
  46. Thajudeen H., Park K., Moon S. S., Hong I. S. ( 2010). An efficient green synthesis of proline-based cyclic dipeptides under water-mediated catalyst-free conditions. Tetrahedron Lett 51:1303–1305 [View Article]
    [Google Scholar]
  47. Thasnakorn P. ( 1976). Detection of aflatoxin in ground roast peanut. Siriraj Hosp Gaz 28:375–382
    [Google Scholar]
  48. Trigos A., Reyna S., Galindo G., Ramos J. M. ( 1996). Diketopiperazines from cultures of fungus Pestalotia palmarum . Nat Prod Lett 8:199–205 [View Article]
    [Google Scholar]
  49. van der Greef J., Tas A. C., Nijssen L. M., Jetten J., Höhn M. ( 1987). Identification and quantitation of diketopiperazines by liquid chromatography-mass spectrometry, using a moving belt interface. Chromatography 394:77–88 [View Article]
    [Google Scholar]
  50. Waenlor W., Wiwanitkit V. ( 2003). Aflatoxin contamination of food and food products in Thailand: an overview. Southeast Asian J Trop Med Public Health 34:Suppl. 2184–190[PubMed]
    [Google Scholar]
  51. Wang J. H., Quan C. S., Qi X. H., Li X., Fan S. D. ( 2010). Determination of diketopiperazines of Burkholderia cepacia CF-66 by gas chromatography-mass spectrometry. Anal Bioanal Chem 396:1773–1779 [View Article][PubMed]
    [Google Scholar]
  52. Wild C. P., Turner P. C. ( 2002). The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 17:471–481 [View Article][PubMed]
    [Google Scholar]
  53. Woloshuk C. P., Foutz K. R., Brewer J. F., Bhatnagar D., Cleveland T. E., Payne G. A. ( 1994). Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesis. Appl Environ Microbiol 60:2408–2414[PubMed]
    [Google Scholar]
  54. Wu F., Khlangwiset P. ( 2010). Health economic impacts and cost-effectiveness of aflatoxin-reduction strategies in Africa: case studies in biocontrol and post-harvest interventions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:496–509 [View Article][PubMed]
    [Google Scholar]
  55. Wu Q., Jezkova A., Yuan Z., Pavlikova L., Dohnal V., Kuca K. ( 2009). Biological degradation of aflatoxins. Drug Metab Rev 41:1–7 [View Article][PubMed]
    [Google Scholar]
  56. Yan P. S., Song Y., Sakuno E., Nakajima H., Nakagawa H., Yabe K. ( 2004). Cyclo(l-leucyl–l-prolyl) produced by Achromobacter xylosoxidans inhibits aflatoxin production by Aspergillus parasiticus . Appl Environ Microbiol 70:7466–7473 [View Article][PubMed]
    [Google Scholar]
  57. Yin Y. N., Yan L. Y., Jiang J. H., Ma Z. H. ( 2008). Biological control of aflatoxin contamination of crops. J Zhejiang Univ Sci B 9:787–792 [View Article][PubMed]
    [Google Scholar]
  58. Yoshinari T., Akiyama T., Nakamura K., Kondo T., Takahashi Y., Muraoka Y., Nonomura Y., Nagasawa H., Sakuda S. ( 2007). Dioctatin A is a strong inhibitor of aflatoxin production by Aspergillus parasiticus . Microbiology 153:2774–2780 [View Article][PubMed]
    [Google Scholar]
  59. Yu J., Chang P. K., Ehrlich K. C., Cary J. W., Bhatnagar D., Cleveland T. E., Payne G. A., Linz J. E., Woloshuk C. P., Bennett J. W. ( 2004). Clustered pathways genes in aflatoxin biosynthesis. Appl Microbiol 70:1253–1262 [View Article]
    [Google Scholar]
  60. Zhao L. H., Guan S., Gao X., Ma Q. G., Lei Y. P., Bai X. M., Ji C. ( 2011). Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J Appl Microbiol 110:147–155 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.065813-0
Loading
/content/journal/micro/10.1099/mic.0.065813-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error