1887

Abstract

Many biological signalling pathways have evolved to produce responses to environmental signals that are robust to fluctuations in protein copy number and noise. Whilst beneficial for biology, this robustness can be problematic for synthetic biologists wishing to re-engineer and subsequently tune the response of a given system. Here we show that the well-characterized EnvZ/OmpR two-component signalling system from possesses one such robust step response. However, the synthetic addition of just a single component into the system, an extra independently controllable phosphatase, can change this behaviour to become graded and tunable, and even show adaptation. Our approach introduces a new design principle which can be implemented simply in engineering and redesigning fast signal transduction pathways for synthetic biology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066324-0
2013-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1276.html?itemId=/content/journal/micro/10.1099/mic.0.066324-0&mimeType=html&fmt=ahah

References

  1. Alves R., Savageau M. A.( 2003). Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function. Mol Microbiol 48:25–51 [View Article][PubMed]
    [Google Scholar]
  2. Bashor C. J., Horwitz A. A., Peisajovich S. G., Lim W. A.( 2010). Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39:515–537 [View Article][PubMed]
    [Google Scholar]
  3. Batchelor E., Goulian M.( 2003). Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100:691–696 [View Article][PubMed]
    [Google Scholar]
  4. Batchelor E., Walthers D., Kenney L. J., Goulian M.( 2005). The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC.. J Bacteriol 187:5723–5731 [View Article][PubMed]
    [Google Scholar]
  5. Casino P., Rubio V., Marina A.( 2009). Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139:325–336 [View Article][PubMed]
    [Google Scholar]
  6. Forst S. A., Roberts D. L.( 1994). Signal transduction by the EnvZ-OmpR phosphotransfer system in bacteria. Res Microbiol 145:363–373 [View Article][PubMed]
    [Google Scholar]
  7. Jin T., Inouye M.( 1993). Ligand binding to the receptor domain regulates the ratio of kinase to phosphatase activities of the signaling domain of the hybrid Escherichia coli transmembrane receptor, Taz1. J Mol Biol 232:484–492 [View Article][PubMed]
    [Google Scholar]
  8. Jin T., Inouye M.( 1994). Transmembrane signaling: mutational analysis of the cytoplasmic linker region of Taz1-1, a Tar-EnvZ chimeric receptor in Escherichia coli. J Mol Biol 244:477–481 [View Article][PubMed]
    [Google Scholar]
  9. Kenney L. J.( 1997). Kinase activity of EnvZ, an osmoregulatory signal transducing protein of Escherichia coli. Arch Biochem Biophys 346:303–311 [View Article][PubMed]
    [Google Scholar]
  10. King S. T., Kenney L. J.( 2007). Application of fluorescence resonance energy transfer to examine EnvZ/OmpR interactions. Methods Enzymol 422:352–360 [View Article][PubMed]
    [Google Scholar]
  11. Lim W. A.( 2010). Designing customized cell signalling circuits. Nat Rev Mol Cell Biol 11:393–403 [View Article][PubMed]
    [Google Scholar]
  12. Michalodimitrakis K. M., Sourjik V., Serrano L.( 2005). Plasticity in amino acid sensing of the chimeric receptor Taz. Mol Microbiol 58:257–266 [View Article][PubMed]
    [Google Scholar]
  13. Miller J. H.( 1992). A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  14. Qin L., Yoshida T., Inouye M.( 2001). The critical role of DNA in the equilibrium between OmpR and phosphorylated OmpR mediated by EnvZ in Escherichia coli. Proc Natl Acad Sci U S A 98:908–913[PubMed]
    [Google Scholar]
  15. Sato M., Machida K., Arikado E., Saito H., Kakegawa T., Kobayashi H.( 2000). Expression of outer membrane proteins in Escherichia coli growing at acid pH. Appl Environ Microbiol 66:943–947 [View Article][PubMed]
    [Google Scholar]
  16. Shinar G., Feinberg M.( 2010). Structural sources of robustness in biochemical reaction networks. Science 327:1389–1391 [View Article][PubMed]
    [Google Scholar]
  17. Shinar G., Milo R., Martínez M. R., Alon U.( 2007). Input output robustness in simple bacterial signaling systems. Proc Natl Acad Sci U S A 104:19931–19935 [View Article][PubMed]
    [Google Scholar]
  18. Utsumi R., Brissette R. E., Rampersaud A., Forst S. A., Oosawa K., Inouye M.( 1989). Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245:1246–1249 [View Article][PubMed]
    [Google Scholar]
  19. Wadhams G. H., Armitage J. P.( 2004). Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037 [View Article][PubMed]
    [Google Scholar]
  20. Wagner S., Bader M. L., Drew D., de Gier J. W.( 2006). Rationalizing membrane protein overexpression. Trends Biotechnol 24:364–371 [View Article][PubMed]
    [Google Scholar]
  21. Wagner S., Baars L., Ytterberg A. J., Klussmeier A., Wagner C. S., Nord O., Nygren P. A., van Wijk K. J., de Gier J. W.( 2007). Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550 [View Article][PubMed]
    [Google Scholar]
  22. Wolfe A. J.( 2005). The acetate switch. Microbiol Mol Biol Rev 69:12–50 [View Article][PubMed]
    [Google Scholar]
  23. Yi T. M., Huang Y., Simon M. I., Doyle J.( 2000). Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci U S A 97:4649–4653 [View Article][PubMed]
    [Google Scholar]
  24. Yoshida T., Cai S., Inouye M.( 2002). Interaction of EnvZ, a sensory histidine kinase, with phosphorylated OmpR, the cognate response regulator. Mol Microbiol 46:1283–1294 [View Article][PubMed]
    [Google Scholar]
  25. Yoshida T., Qin L., Egger L. A., Inouye M.( 2006). Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem 281:17114–17123 [View Article][PubMed]
    [Google Scholar]
  26. Yoshida T., Phadtare S., Inouye M.( 2007). The design and development of Tar-EnvZ chimeric receptors. Methods Enzymol 423:166–183 [View Article][PubMed]
    [Google Scholar]
  27. Zhu Y., Qin L., Yoshida T., Inouye M.( 2000). Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain. Proc Natl Acad Sci U S A 97:7808–7813 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066324-0
Loading
/content/journal/micro/10.1099/mic.0.066324-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error