1887

Abstract

possesses a pronounced extracellular Cu-reduction activity which leads to the accumulation of Cu in the medium. The kinetics of this reaction were not saturable by increasing copper concentrations, suggesting a non-enzymic reaction. A copper-reductase-deficient mutant, isolated by random transposon mutagenesis, had an insertion in the gene, which encodes -succinylbenzoic acid CoA ligase. This is a key enzyme in menaquinone biosynthesis. The Δ mutant was deficient in short-chain menaquinones, and exogenously added menaquinone complemented the copper-reductase-deficient phenotype. Haem-induced respiration of wild-type efficiently suppressed copper reduction, presumably by competition by the -type quinol oxidase for menaquinone. As expected, the Δ mutant was respiration-deficient, but could be made respiration-proficient by supplementation with menaquinone. Growth of wild-type cells was more copper-sensitive than that of the Δ mutant, due to the production of Cu ions by the wild-type. This growth inhibition of the wild-type was strongly attenuated if Cu was scavenged with the Cu(I) chelator bicinchoninic acid. These findings support a model whereby copper is non-enzymically reduced at the membrane by menaquinones. Respiration effectively competes for reduced quinones, which suppresses copper reduction. These findings highlight novel links between copper reduction, respiration and Cu toxicity in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066928-0
2013-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/6/1190.html?itemId=/content/journal/micro/10.1099/mic.0.066928-0&mimeType=html&fmt=ahah

References

  1. Argüello J. M., Eren E., González-Guerrero M.( 2007). The structure and function of heavy metal transport P1B-ATPases. Biometals 20:233–248 [View Article][PubMed]
    [Google Scholar]
  2. Ausubel R. M., Brent R., Kingston R. E., Moore D. D., Smith J. A., Struhl K.( 1995). Current Protocols in Molecular Biology New York: John Wiley & Sons, Inc;
    [Google Scholar]
  3. Beswick P. H., Hall G. H., Hook A. J., Little K., McBrien D. C., Lott K. A.( 1976). Copper toxicity: evidence for the conversion of cupric to cuprous copper in vivo under anaerobic conditions. Chem Biol Interact 14:347–356 [View Article][PubMed]
    [Google Scholar]
  4. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A.( 2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [View Article][PubMed]
    [Google Scholar]
  5. Bongers R. S., Hoefnagel M. H., Kleerebezem M.( 2005). High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl Environ Microbiol 71:1109–1113 [View Article][PubMed]
    [Google Scholar]
  6. Brandt U., Trumpower B.( 1994). The protonmotive Q cycle in mitochondria and bacteria. Crit Rev Biochem Mol Biol 29:165–197 [View Article][PubMed]
    [Google Scholar]
  7. Brenner A. J., Harris E. D.( 1995). A quantitative test for copper using bicinchoninic acid. Anal Biochem 226:80–84 [View Article][PubMed]
    [Google Scholar]
  8. Chillappagari S., Miethke M., Trip H., Kuipers O. P., Marahiel M. A.( 2009). Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol 191:2362–2370 [View Article][PubMed]
    [Google Scholar]
  9. Duwat P., Sourice S., Cesselin B., Lamberet G., Vido K., Gaudu P., Le Loir Y., Violet F., Loubière P., Gruss A.( 2001). Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol 183:4509–4516 [View Article][PubMed]
    [Google Scholar]
  10. Gaudu P., Vido K., Cesselin B., Kulakauskas S., Tremblay J., Rezaïki L., Lamberet G., Sourice S., Duwat P., Gruss A.( 2002). Respiration capacity and consequences in Lactococcus lactis. Antonie van Leeuwenhoek 82:263–269 [View Article][PubMed]
    [Google Scholar]
  11. Gerber S. D., Solioz M.( 2007). Efficient transformation of Lactococcus lactis IL1403 and generation of knock-out mutants by homologous recombination. J Basic Microbiol 47:281–286 [View Article][PubMed]
    [Google Scholar]
  12. Kaneko T., Takahashi M., Suzuki H.( 1990). Acetoin fermentation by citrate-positive Lactococcus lactis subsp. lactis 3022 grown aerobically in the presence of hemin or Cu2+. Appl Environ Microbiol 56:2644–2649[PubMed]
    [Google Scholar]
  13. Karlin K. D.( 1993). Metalloenzymes, structural motifs, and inorganic models. Science 261:701–708 [View Article][PubMed]
    [Google Scholar]
  14. Karlyshev A. V., Pallen M. J., Wren B. W.( 2000). Single-primer PCR procedure for rapid identification of transposon insertion sites. Biotechniques 28:1078–10801082[PubMed]
    [Google Scholar]
  15. Lovley D. R.( 2002). Dissimilatory metal reduction: from early life to bioremediation. ASM News 68:231–237
    [Google Scholar]
  16. Macomber L., Imlay J. A.( 2009). The iron–sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349 [View Article][PubMed]
    [Google Scholar]
  17. Magnani D., Solioz M.( 2007). How bacteria handle copper. Molecular Microbiology of Heavy Metals259–285 Nies D. H., Silver S. Heidelberg: Springer; [View Article]
    [Google Scholar]
  18. Maguin E., Prévost H., Ehrlich S. D., Gruss A.( 1996). Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935[PubMed]
    [Google Scholar]
  19. Myers C. R., Myers J. M.( 2004). Shewanella oneidensis MR-1 restores menaquinone synthesis to a menaquinone-negative mutant. Appl Environ Microbiol 70:5415–5425 [View Article][PubMed]
    [Google Scholar]
  20. Navarrete J. U., Borrok D. M., Viveros M., Ellzey J. T.( 2011). Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochim Cosmochim Acta 75:784–799 [View Article][PubMed]
    [Google Scholar]
  21. Neves A. R., Ramos A., Costa H., van Swam I. I., Hugenholtz J., Kleerebezem M., de Vos W., Santos H.( 2002). Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol 68:6332–6342 [View Article][PubMed]
    [Google Scholar]
  22. Rapisarda V. A., Montelongo L. R., Farías R. N., Massa E. M.( 1999). Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Arch Biochem Biophys 370:143–150 [View Article][PubMed]
    [Google Scholar]
  23. Rapisarda V. A., Chehín R. N., De Las Rivas J., Rodríguez-Montelongo L., Farías R. N., Massa E. M.( 2002). Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. Arch Biochem Biophys 405:87–94 [View Article][PubMed]
    [Google Scholar]
  24. Rezaïki L., Lamberet G., Derré A., Gruss A., Gaudu P.( 2008). Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Mol Microbiol 67:947–957 [View Article][PubMed]
    [Google Scholar]
  25. Sijpesteijn A. K.( 1970). Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie van Leeuwenhoek 36:335–348 [View Article][PubMed]
    [Google Scholar]
  26. Solioz M., Stoyanov J. V.( 2003). Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195 [View Article][PubMed]
    [Google Scholar]
  27. Solioz M., Abicht H. K., Mermod M., Mancini S.( 2010). Response of Gram-positive bacteria to copper stress. J Biol Inorg Chem 15:3–14 [View Article][PubMed]
    [Google Scholar]
  28. Solioz M., Mancini S., Abicht H. K., Mermod M.( 2011). The lactic acid bacteria response to metal stress. Stress Response of Lactic Acid Bacteria163–195 Tsakalidou E., Papadimitriou K. Heidelberg: Springer; [View Article]
    [Google Scholar]
  29. Strausak D., Solioz M.( 1997). CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 272:8932–8936 [View Article][PubMed]
    [Google Scholar]
  30. Tachon S., Brandsma J. B., Yvon M.( 2010). NoxE NADH oxidase and the electron transport chain are responsible for the ability of Lactococcus lactis to decrease the redox potential of milk. Appl Environ Microbiol 76:1311–1319 [View Article][PubMed]
    [Google Scholar]
  31. Terzaghi B. E., Sandine W. E.( 1975). Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813[PubMed]
    [Google Scholar]
  32. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R.( 1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67 [View Article][PubMed]
    [Google Scholar]
  33. Volentini S. I., Farías R. N., Rodríguez-Montelongo L., Rapisarda V. A.( 2011). Cu(II)-reduction by Escherichia coli cells is dependent on respiratory chain components. Biometals 24:827–835 [View Article][PubMed]
    [Google Scholar]
  34. Wunderli-Ye H., Solioz M.( 1999). Copper homeostasis in Enterococcus hirae. Adv Exp Med Biol 448:255–264 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066928-0
Loading
/content/journal/micro/10.1099/mic.0.066928-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error