1887

Abstract

Oxidative stress converts sulfur residues of molecules like biotin and methionine into their oxidized forms. Here we show that the biotin sulfoxide reductase BisC of serovar Typhimurium (. Typhimurium) repairs both oxidized biotin and oxidized methionine. Exposure to HO reduced survival of a Typhimurium Δ mutant. Furthermore, replication of the Δ mutant inside IFN-γ activated macrophages was reduced. tolerance of the mutant to HO was restored by plasmids carrying either or the latter encodes a methioinine sulfoxide reductase. In contrast, the proliferation defect inside IFN-γ activated macrophages was rescued by but not by . Thus growth of the Δ mutant in IFN-γ activated macrophages required repair of oxidized biotin. Both the Δ and a biotin auxotrophic (Δ) mutant were attenuated in mice, suggesting that besides biotin biosynthesis, biotin repair was essential for virulence of . Typhimurium . Attenuation of the Δ mutant was more pronounced in 129 mice that produce a stronger oxidative response. These results show that BisC is essential for full virulence of by contributing to the defence of Typhimurium against host-derived stress, and provides an attractive drug target since it is not present in mammals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067256-0
2013-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1447.html?itemId=/content/journal/micro/10.1099/mic.0.067256-0&mimeType=html&fmt=ahah

References

  1. Aussel L., Zhao W., Hébrard M., Guilhon A. A., Viala J. P., Henri S., Chasson L., Gorvel J. P., Barras F., Méresse S. ( 2011). Salmonella detoxifying enzymes are sufficient to cope with the host oxidative burst. Mol Microbiol 80:628–640 [View Article][PubMed]
    [Google Scholar]
  2. Bagchi D., Bagchi M., Stohs S. J. ( 1997). Comparative in vitro oxygen radical scavenging ability of zinc methionine and selected zinc salts and antioxidants. Gen Pharmacol 28:85–91 [View Article][PubMed]
    [Google Scholar]
  3. Beuzón C. R., Holden D. W. ( 2001). Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo. Microbes Infect 3:1345–1352 [View Article][PubMed]
    [Google Scholar]
  4. Brot N., Weissbach H. ( 2000). Peptide methionine sulfoxide reductase: biochemistry and physiological role. Biopolymers 55:288–296 [View Article][PubMed]
    [Google Scholar]
  5. Buchmeier N. A., Libby S. J. ( 1997). Dynamics of growth and death within a Salmonella typhimurium population during infection of macrophages. Can J Microbiol 43:29–34 [View Article][PubMed]
    [Google Scholar]
  6. Chakravortty D., Hansen-Wester I., Hensel M. ( 2002). Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J Exp Med 195:1155–1166 [View Article][PubMed]
    [Google Scholar]
  7. Chang S. Y., McGary E. C., Chang S. ( 1989). Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J Bacteriol 171:4071–4072[PubMed]
    [Google Scholar]
  8. Cronan J. E. J., Rock C. O. ( 1996). Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd edn.612–636 Neidhardt F. C. et al. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  10. del Campillo-Campbell A., Campbell A. ( 1982). Molybdenum cofactor requirement for biotin sulfoxide reduction in Escherichia coli. J Bacteriol 149:469–478[PubMed]
    [Google Scholar]
  11. del Campillo Campbell A., Campbell A. ( 1996). Alternative gene for biotin sulfoxide reduction in Escherichia coli K-12. J Mol Evol 42:85–90 [View Article][PubMed]
    [Google Scholar]
  12. Denkel L. A., Horst S. A., Rouf S. F., Kitowski V., Böhm O. M., Rhen M., Jäger T., Bange F. C. ( 2011). Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium . PLoS ONE 6:e26974 [View Article][PubMed]
    [Google Scholar]
  13. Dey S., Lane J. M., Lee R. E., Rubin E. J., Sacchettini J. C. ( 2010). Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry 49:6746–6760 [View Article][PubMed]
    [Google Scholar]
  14. Douglas T., Daniel D. S., Parida B. K., Jagannath C., Dhandayuthapani S. ( 2004). Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages. J Bacteriol 186:3590–3598 [View Article][PubMed]
    [Google Scholar]
  15. Dykhuizen D. ( 1973). Genetic analysis of the system that reduces biotin-d-sulfoxide in Escherichia coli. J Bacteriol 115:662–667[PubMed]
    [Google Scholar]
  16. Ejiri S. I., Weissbach H., Brot N. ( 1979). Reduction of methionine sulfoxide to methionine by Escherichia coli. J Bacteriol 139:161–164[PubMed]
    [Google Scholar]
  17. Ezraty B., Bos J., Barras F., Aussel L. ( 2005). Methionine sulfoxide reduction and assimilation in Escherichia coli: new role for the biotin sulfoxide reductase BisC. J Bacteriol 187:231–237 [View Article][PubMed]
    [Google Scholar]
  18. Fang F. C., DeGroote M. A., Foster J. W., Bäumler A. J., Ochsner U., Testerman T., Bearson S., Giárd J. C., Xu Y. et al. ( 1999). Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc Natl Acad Sci U S A 96:7502–7507 [View Article][PubMed]
    [Google Scholar]
  19. Fields P. I., Swanson R. V., Haidaris C. G., Heffron F. ( 1986). Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83:5189–5193 [View Article][PubMed]
    [Google Scholar]
  20. Freiberg C., Brunner N. A., Schiffer G., Lampe T., Pohlmann J., Brands M., Raabe M., Häbich D., Ziegelbauer K. ( 2004). Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem 279:26066–26073 [View Article][PubMed]
    [Google Scholar]
  21. Fritsche G., Dlaska M., Barton H., Theurl I., Garimorth K., Weiss G. ( 2003). Nramp1 functionality increases inducible nitric oxide synthase transcription via stimulation of IFN regulatory factor 1 expression. J Immunol 171:1994–1998[PubMed] [CrossRef]
    [Google Scholar]
  22. Fritsche G., Nairz M., Libby S. J., Fang F. C., Weiss G. ( 2012). Slc11a1 (Nramp1) impairs growth of Salmonella enterica serovar typhimurium in macrophages via stimulation of lipocalin-2 expression. J Leukoc Biol 92:353–359 [View Article][PubMed]
    [Google Scholar]
  23. Gallois A., Klein J. R., Allen L. A., Jones B. D., Nauseef W. M. ( 2001). Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J Immunol 166:5741–5748[PubMed] [CrossRef]
    [Google Scholar]
  24. García-del Portillo F., Núñez-Hernández C., Eisman B., Ramos-Vivas J. ( 2008). Growth control in the Salmonella-containing vacuole. Curr Opin Microbiol 11:46–52 [View Article][PubMed]
    [Google Scholar]
  25. Garton S. D., Temple C. A., Dhawan I. K., Barber M. J., Rajagopalan K. V., Johnson M. K. ( 2000). Resonance Raman characterization of biotin sulfoxide reductase. Comparing oxomolybdenum enzymes in the ME(2)SO reductase family. J Biol Chem 275:6798–6805 [View Article][PubMed]
    [Google Scholar]
  26. Gon S., Giudici-Orticoni M. T., Méjean V., Iobbi-Nivol C. ( 2001). Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J Biol Chem 276:11545–11551 [View Article][PubMed]
    [Google Scholar]
  27. Guzman L. M., Belin D., Carson M. J., Beckwith J. ( 1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130[PubMed]
    [Google Scholar]
  28. Haraga A., Ohlson M. B., Miller S. I. ( 2008). Salmonellae interplay with host cells. Nat Rev Microbiol 6:53–66 [View Article][PubMed]
    [Google Scholar]
  29. Hébrard M., Viala J. P., Méresse S., Barras F., Aussel L. ( 2009). Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 191:4605–4614 [View Article][PubMed]
    [Google Scholar]
  30. Ho M., Cheers C. ( 1982). Resistance and susceptibility of mice to bacterial infection. IV. Genetic and cellular basis of resistance to chronic infection with Brucella abortus. J Infect Dis 146:381–387 [View Article][PubMed]
    [Google Scholar]
  31. Hoiseth S. K., Stocker B. A. ( 1981). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239 [View Article][PubMed]
    [Google Scholar]
  32. Horst S. A., Jaeger T., Denkel L. A., Rouf S. F., Rhen M., Bange F. C. ( 2010). Thiol peroxidase protects Salmonella enterica from hydrogen peroxide stress in vitro and facilitates intracellular growth. J Bacteriol 192:2929–2932 [View Article][PubMed]
    [Google Scholar]
  33. Johnson K. E., Rajagopalan K. V. ( 2001). An active site tyrosine influences the ability of the dimethyl sulfoxide reductase family of molybdopterin enzymes to reduce S-oxides. J Biol Chem 276:13178–13185 [View Article][PubMed]
    [Google Scholar]
  34. Kim B., Richards S. M., Gunn J. S., Slauch J. M. ( 2010). Protecting against antimicrobial effectors in the phagosome allows SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium. J Bacteriol 192:2140–2149 [View Article][PubMed]
    [Google Scholar]
  35. Krishnakumar R., Craig M., Imlay J. A., Slauch J. M. ( 2004). Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J Bacteriol 186:5230–5238 [View Article][PubMed]
    [Google Scholar]
  36. Lee W. L., Gold B., Darby C., Brot N., Jiang X., de Carvalho L. P., Wellner D., St John G., Jacobs W. R. Jr, Nathan C. ( 2009). Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 71:583–593 [View Article][PubMed]
    [Google Scholar]
  37. Levine R. L., Mosoni L., Berlett B. S., Stadtman E. R. ( 1996). Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036–15040 [View Article][PubMed]
    [Google Scholar]
  38. McClelland M., Sanderson K. E., Spieth J., Clifton S. W., Latreille P., Courtney L., Porwollik S., Ali J., Dante M. et al. ( 2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856 [View Article][PubMed]
    [Google Scholar]
  39. Melville D. B. ( 1954). Biotin sulfoxide. J Biol Chem 208:495–501[PubMed]
    [Google Scholar]
  40. Melville D. B., Genghof D. S., Lee J. M. ( 1954). Biological properties of biotin d- and l-sulfoxides. J Biol Chem 208:503–512[PubMed]
    [Google Scholar]
  41. Miller C. G., Strauch K. L., Kukral A. M., Miller J. L., Wingfield P. T., Mazzei G. J., Werlen R. C., Graber P., Movva N. R. ( 1987). N-terminal methionine-specific peptidase in Salmonella typhimurium. Proc Natl Acad Sci U S A 84:2718–2722 [View Article][PubMed]
    [Google Scholar]
  42. Moskovitz J. ( 2005). Roles of methionine suldfoxide reductases in antioxidant defense, protein regulation and survival. Curr Pharm Des 11:1451–1457 [View Article][PubMed]
    [Google Scholar]
  43. Napier B. A., Meyer L., Bina J. E., Miller M. A., Sjöstedt A., Weiss D. S. ( 2012). Link between intraphagosomal biotin and rapid phagosomal escape in Francisella. Proc Natl Acad Sci U S A 109:18084–18089 [View Article][PubMed]
    [Google Scholar]
  44. Nelson K. J., Rajagopalan K. V. ( 2004). Studies on the interaction of NADPH with Rhodobacter sphaeroides biotin sulfoxide reductase. Biochemistry 43:11226–11237 [View Article][PubMed]
    [Google Scholar]
  45. Nielsen E., Shull G. M., Peterson W. H. ( 1942). Response of bacteria, yeast and rats to peroxide-treated biotin, intestinal synthesis of biotin in the rat1. J Nutr 24:
    [Google Scholar]
  46. Pierson D. E., Campbell A. ( 1990). Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli. J Bacteriol 172:2194–2198[PubMed]
    [Google Scholar]
  47. Pollock V. V., Barber M. J. ( 1995). Molecular cloning and expression of biotin sulfoxide reductase from Rhodobacter sphaeroides Forma sp. denitrificans . Arch Biochem Biophys 318:322–332 [View Article][PubMed]
    [Google Scholar]
  48. Pollock V. V., Barber M. J. ( 1997). Biotin sulfoxide reductase. Heterologous expression and characterization of a functional molybdopterin guanine dinucleotide-containing enzyme. J Biol Chem 272:3355–3362 [View Article][PubMed]
    [Google Scholar]
  49. Pollock V. V., Barber M. J. ( 2000). Serine 121 is an essential amino acid for biotin sulfoxide reductase functionality. J Biol Chem 275:35086–35090 [View Article][PubMed]
    [Google Scholar]
  50. Pollock V. V., Barber M. J. ( 2001). Kinetic and mechanistic properties of biotin sulfoxide reductase. Biochemistry 40:1430–1440 [View Article][PubMed]
    [Google Scholar]
  51. Pollock V. V., Conover R. C., Johnson M. K., Barber M. J. ( 2002). Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog. Arch Biochem Biophys 403:237–248 [View Article][PubMed]
    [Google Scholar]
  52. Pollock V. V., Conover R. C., Johnson M. K., Barber M. J. ( 2003). Biotin sulfoxide reductase: Tryptophan 90 is required for efficient substrate utilization. Arch Biochem Biophys 409:315–326 [View Article][PubMed]
    [Google Scholar]
  53. Schmieger H. ( 1972). Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88 [View Article][PubMed]
    [Google Scholar]
  54. Shi L., Ansong C., Smallwood H., Rommereim L., McDermott J. E., Brewer H. M., Norbeck A. D., Taylor R. C., Gustin J. K. et al. ( 2009). Proteome of Salmonella enterica Serotype Typhimurium grown in a low Mg/pH medium. J Proteomics Bioinform 2:388–397 [View Article][PubMed]
    [Google Scholar]
  55. Singh K., Singh V. K. ( 2012). Expression of Four Methionine Sulfoxide Reductases in Staphylococcus aureus. Int J Microbiol 2012:719594[PubMed] [CrossRef]
    [Google Scholar]
  56. Solbiati J., Chapman-Smith A., Miller J. L., Miller C. G., Cronan J. E. Jr ( 1999). Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290:607–614 [View Article][PubMed]
    [Google Scholar]
  57. Streit W. R., Entcheva P. ( 2003). Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 61:21–31[PubMed] [CrossRef]
    [Google Scholar]
  58. Uzzau S., Bossi L., Figueroa-Bossi N. ( 2002). Differential accumulation of Salmonella[Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol Microbiol 46:147–156 [View Article][PubMed]
    [Google Scholar]
  59. Vazquez-Torres A., Jones-Carson J., Mastroeni P., Ischiropoulos H., Fang F. C. ( 2000). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192:227–236 [View Article][PubMed]
    [Google Scholar]
  60. Vidal S., Tremblay M. L., Govoni G., Gauthier S., Sebastiani G., Malo D., Skamene E., Olivier M., Jothy S., Gros P. ( 1995). The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666 [View Article][PubMed]
    [Google Scholar]
  61. Weissbach H., Etienne F., Hoshi T., Heinemann S. H., Lowther W. T., Matthews B., St John G., Nathan C., Brot N. ( 2002). Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172–178 [View Article][PubMed]
    [Google Scholar]
  62. Winkelstein J. A., Marino M. C., Johnston R. B. Jr, Boyle J., Curnutte J., Gallin J. I., Malech H. L., Holland S. M., Ochs H. et al. ( 2000). Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169 [View Article][PubMed]
    [Google Scholar]
  63. Woong Park S., Klotzsche M., Wilson D. J., Boshoff H. I., Eoh H., Manjunatha U., Blumenthal A., Rhee K., Barry C. E. III et al. ( 2011). Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7:e1002264 [View Article][PubMed]
    [Google Scholar]
  64. Zempleni J. ( 2005). Uptake, localization, and noncarboxylase roles of biotin. Annu Rev Nutr 25:175–196 [View Article][PubMed]
    [Google Scholar]
  65. Zhao C., Hartke A., La Sorda M., Posteraro B., Laplace J. M., Auffray Y., Sanguinetti M. ( 2010). Role of methionine sulfoxide reductases A and B of Enterococcus faecalis in oxidative stress and virulence. Infect Immun 78:3889–3897 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067256-0
Loading
/content/journal/micro/10.1099/mic.0.067256-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error