1887

Abstract

subsp. is a well-known plant pathogen that causes severe soft rot disease in various crops, resulting in considerable economic loss. To identify pathogenicity-related factors, Chinese cabbage was inoculated with 5314 transposon mutants of subsp. Pcc21 derived using Tn5 transposon mutagenesis. A total of 35 reduced-virulence or avirulent mutants were isolated, and 14 loci were identified. The 14 loci could be functionally grouped into nutrient utilization (, , , and ), production of plant cell-wall-degrading enzymes (PCWDEs) (, and PCC21_023220), motility ( and ), biofilm formation (, and ), susceptibility to antibacterial plant chemicals () and unknown function (ECA2640). Among the 14 genes identified, , and PCC21_023220 are novel pathogenicity factors of subsp. involved in biofilm formation, phytochemical resistance and PCWDE production, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067280-0
2013-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1487.html?itemId=/content/journal/micro/10.1099/mic.0.067280-0&mimeType=html&fmt=ahah

References

  1. Abbott D. W., Boraston A. B.( 2008). Structural biology of pectin degradation by Enterobacteriaceae.. Microbiol Mol Biol Rev 72:301–316 [View Article][PubMed]
    [Google Scholar]
  2. Aizawa S. I.( 2001). Bacterial flagella and type III secretion systems. FEMS Microbiol Lett 202:157–164 [View Article][PubMed]
    [Google Scholar]
  3. Al-Karablieh N., Weingart H., Ullrich M. S.( 2009a). Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological niches. Int J Mol Sci 10:629–645 [View Article][PubMed]
    [Google Scholar]
  4. Al-Karablieh N., Weingart H., Ullrich M. S.( 2009b). The outer membrane protein TolC is required for phytoalexin resistance and virulence of the fire blight pathogen Erwinia amylovora.. Microb Biotechnol 2:465–475 [View Article][PubMed]
    [Google Scholar]
  5. Aleksenko A., Liu W., Gojkovic Z., Nielsen J., Piskur J.( 1999). Structural and transcriptional analysis of the pyrABCN, pyrD and pyrF genes in Aspergillus nidulans and the evolutionary origin of fungal dihydroorotases. Mol Microbiol 33:599–611 [View Article][PubMed]
    [Google Scholar]
  6. Barabote R. D., Johnson O. L., Zetina E., San Francisco S. K., Fralick J. A., San Francisco M. J.( 2003). Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. J Bacteriol 185:5772–5778 [View Article][PubMed]
    [Google Scholar]
  7. Burr T., Barnard A. M., Corbett M. J., Pemberton C. L., Simpson N. J., Salmond G. P.( 2006). Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59:113–125 [View Article][PubMed]
    [Google Scholar]
  8. Caspi R., Altman T., Dale J. M., Dreher K., Fulcher C. A., Gilham F., Kaipa P., Karthikeyan A. S., Kothari A. et al.( 2010). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:Database issueD473–D479 [View Article][PubMed]
    [Google Scholar]
  9. Chatterjee S., Sonti R. V.( 2005). Virulence deficiency caused by a transposon insertion in the purH gene of Xanthomonas oryzae pv. oryzae.. Can J Microbiol 51:575–581 [View Article][PubMed]
    [Google Scholar]
  10. Chatterjee A., Cui Y., Liu Y., Dumenyo C. K., Chatterjee A. K.( 1995). Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-l-homoserine lactone. Appl Environ Microbiol 61:1959–1967[PubMed]
    [Google Scholar]
  11. Chatterjee A., Cui Y., Chatterjee A. K.( 2009). RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol 191:4582–4593 [View Article][PubMed]
    [Google Scholar]
  12. Clarke M. B., Hughes D. T., Zhu C., Boedeker E. C., Sperandio V.( 2006). The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103:10420–10425 [View Article][PubMed]
    [Google Scholar]
  13. Cui Y., Chatterjee A., Hasegawa H., Chatterjee A. K.( 2006). Erwinia carotovora subspecies produce duplicate variants of ExpR, LuxR homologs that activate rsmA transcription but differ in their interactions with N-acylhomoserine lactone signals. J Bacteriol 188:4715–4726 [View Article][PubMed]
    [Google Scholar]
  14. Cui Y., Chatterjee A., Yang H., Chatterjee A. K.( 2008). Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol 190:4610–4623 [View Article][PubMed]
    [Google Scholar]
  15. Dougherty M. J., Boyd J. M., Downs D. M.( 2006). Inhibition of fructose-1,6-bisphosphatase by aminoimidazole carboxamide ribotide prevents growth of Salmonella enterica purH mutants on glycerol. J Biol Chem 281:33892–33899 [View Article][PubMed]
    [Google Scholar]
  16. Durham-Colleran M. W., Verhoeven A. B., van Hoek M. L.( 2010). Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol 59:457–465 [View Article][PubMed]
    [Google Scholar]
  17. Federici L., Walas F., Luisi B.( 2004). The structure and mechanism of the TolC outer membrane transport protein. Curr Sci 87:190–196
    [Google Scholar]
  18. Ferris H. U., Furukawa Y., Minamino T., Kroetz M. B., Kihara M., Namba K., Macnab R. M.( 2005). FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem 280:41236–41242 [View Article][PubMed]
    [Google Scholar]
  19. Fray R. G., Throup J. P., Daykin M., Wallace A., Williams P., Stewart G. S., Grierson D.( 1999). Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17:1017–1020 [View Article][PubMed]
    [Google Scholar]
  20. González Barrios A. F., Zuo R., Hashimoto Y., Yang L., Bentley W. E., Wood T. K.( 2006). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316 [View Article][PubMed]
    [Google Scholar]
  21. Gu Y. Z., Hogenesch J. B., Bradfield C. A.( 2000). The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561 [View Article][PubMed]
    [Google Scholar]
  22. Hadjifrangiskou M., Kostakioti M., Chen S. L., Henderson J. P., Greene S. E., Hultgren S. J.( 2011). A central metabolic circuit controlled by QseC in pathogenic Escherichia coli.. Mol Microbiol 80:1516–1529 [View Article][PubMed]
    [Google Scholar]
  23. Henke J. M., Bassler B. L.( 2004). Bacterial social engagements. Trends Cell Biol 14:648–656 [View Article][PubMed]
    [Google Scholar]
  24. Hossain Md. M., Shibata S., Aizawa S.-I., Tsuyumu S.( 2005). Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora.. Physiol Mol Plant Pathol 66:134–143 [View Article]
    [Google Scholar]
  25. Jahn C. E., Selimi D. A., Barak J. D., Charkowski A. O.( 2011). The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon. Microbiology 157:2733–2744 [View Article][PubMed]
    [Google Scholar]
  26. Kim Y. R., Lee S. E., Kim C. M., Kim S. Y., Shin E. K., Shin D. H., Chung S. S., Choy H. E., Progulske-Fox A. et al.( 2003). Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71:5461–5471 [View Article][PubMed]
    [Google Scholar]
  27. Koczan J. M., McGrath M. J., Zhao Y., Sundin G. W.( 2009). Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244 [View Article][PubMed]
    [Google Scholar]
  28. Kutsukake K., Ohya Y., Iino T.( 1990). Transcriptional analysis of the flagellar regulon of Salmonella typhimurium.. J Bacteriol 172:741–747[PubMed]
    [Google Scholar]
  29. Laasik E., Ojarand M., Pajunen M., Savilahti H., Mäe A.( 2005). Novel mutants of Erwinia carotovora subsp. carotovora defective in the production of plant cell wall degrading enzymes generated by Mu transpososome-mediated insertion mutagenesis. FEMS Microbiol Lett 243:93–99 [View Article][PubMed]
    [Google Scholar]
  30. Lee D. H., Jeong H. S., Jeong H. G., Kim K. M., Kim H., Choi S. H.( 2008). A consensus sequence for binding of SmcR, a Vibrio vulnificus LuxR homologue, and genome-wide identification of the SmcR regulon. J Biol Chem 283:23610–23618 [View Article][PubMed]
    [Google Scholar]
  31. Mole B., Habibi S., Dangl J. L., Grant S. R.( 2010). Gluconate metabolism is required for virulence of the soft-rot pathogen Pectobacterium carotovorum.. Mol Plant Microbe Interact 23:1335–1344 [View Article][PubMed]
    [Google Scholar]
  32. Nasser W., Bouillant M. L., Salmond G., Reverchon S.( 1998). Characterization of the Erwinia chrysanthemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391–1405 [View Article][PubMed]
    [Google Scholar]
  33. Novak E. A., Shao H., Daep C. A., Demuth D. R.( 2010). Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans.. Infect Immun 78:2919–2926 [View Article][PubMed]
    [Google Scholar]
  34. O’Toole G. A., Kolter R.( 1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461 [View Article][PubMed]
    [Google Scholar]
  35. Patte J. C., Clepet C., Bally M., Borne F., Méjean V., Foglino M.( 1999). ThrH, a homoserine kinase isozyme with in vivo phosphoserine phosphatase activity in Pseudomonas aeruginosa.. Microbiology 145:845–853 [View Article][PubMed]
    [Google Scholar]
  36. Pérez-Mendoza D., Coulthurst S. J., Sanjuán J., Salmond G. P.( 2011). N-Acetylglucosamine-dependent biofilm formation in Pectobacterium atrosepticum is cryptic and activated by elevated c-di-GMP levels. Microbiology 157:3340–3348 [View Article][PubMed]
    [Google Scholar]
  37. Perombelon M. C. M.( 2002). Potato disease caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol 51:1–12 [View Article]
    [Google Scholar]
  38. Pertea M., Ayanbule K., Smedinghoff M., Salzberg S. L.( 2009). OperonDB: a comprehensive database of predicted operons in microbial genomes. Nucleic Acids Res 37:Database issueD479–D482 [View Article][PubMed]
    [Google Scholar]
  39. Pirhonen M., Saarilahti H., Karlsson M.-B., Palva E. T.( 1991). Identification of pathogenicity determinants of Erwinia carotovora subsp. carotovora by transposon mutagenesis. Mol Plant Microbe Interact 4:276–283 [View Article]
    [Google Scholar]
  40. Pirhonen M., Flego D., Heikinheimo R., Palva E. T.( 1993). A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 12:2467–2476[PubMed]
    [Google Scholar]
  41. Pratt L. A., Kolter R.( 1998). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293 [View Article][PubMed]
    [Google Scholar]
  42. Prigent-Combaret C., Zghidi-Abouzid O., Effantin G., Lejeune P., Reverchon S., Nasser W.( 2012). The nucleoid-associated protein Fis directly modulates the synthesis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic bacterium Dickeya dadantii.. Mol Microbiol 86:172–186 [View Article][PubMed]
    [Google Scholar]
  43. Roh E., Park T. H., Kim M. I., Lee S., Ryu S., Oh C. S., Rhee S., Kim D. H., Park B. S., Heu S.( 2010). Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl Environ Microbiol 76:7541–7549 [View Article][PubMed]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.( 1989). Molecular Cloning: a Laboratory Manual New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  45. Simões M., Bennett R. N., Rosa E. A.( 2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26:746–757 [View Article][PubMed]
    [Google Scholar]
  46. Sperandio V., Torres A. G., Kaper J. B.( 2002). Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli.. Mol Microbiol 43:809–821 [View Article][PubMed]
    [Google Scholar]
  47. Starr M. P., Chatterjee A. K., Starr P. B., Buchanan G. E.( 1977). Enzymatic degradation of polygalacturonic acid by Yersinia and Klebsiella species in relation to clinical laboratory procedures. J Clin Microbiol 6:379–386[PubMed]
    [Google Scholar]
  48. Taylor B. L., Zhulin I. B.( 1999). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506[PubMed]
    [Google Scholar]
  49. Toth I. K., Bell K. S., Holeva M. C., Birch P. R.( 2003). Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30 [View Article][PubMed]
    [Google Scholar]
  50. Urbany C., Neuhaus H. E.( 2008). Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence. Mol Plant Microbe Interact 21:547–554 [View Article][PubMed]
    [Google Scholar]
  51. Wakimoto N., Nishi J., Sheikh J., Nataro J. P., Sarantuya J., Iwashita M., Manago K., Tokuda K., Yoshinaga M., Kawano Y.( 2004). Quantitative biofilm assay using a microtiter plate to screen for enteroaggregative Escherichia coli.. Am J Trop Med Hyg 71:687–690[PubMed]
    [Google Scholar]
  52. Wang Y., Xu Y., Perepelov A. V., Qi Y., Knirel Y. A., Wang L., Feng L.( 2007). Biochemical characterization of dTDP-D-Qui4N and dTDP-D-Qui4NAc biosynthetic pathways in Shigella dysenteriae type 7 and Escherichia coli O7. J Bacteriol 189:8626–8635 [View Article][PubMed]
    [Google Scholar]
  53. Wery N., Gerike U., Sharman A., Chaudhuri J. B., Hough D. W., Danson M. J.( 2003). Use of a packed-column bioreactor for isolation of diverse protease-producing bacteria from Antarctic soil. Appl Environ Microbiol 69:1457–1464 [View Article][PubMed]
    [Google Scholar]
  54. West T. P.( 2005). Regulation of pyrimidine synthesis in Pseudomonas resinovorans.. Lett Appl Microbiol 40:473–478 [View Article][PubMed]
    [Google Scholar]
  55. Whitehead N. A., Byers J. T., Commander P., Corbett M. J., Coulthurst S. J., Everson L., Harris A. K., Pemberton C. L., Simpson N. J. et al.( 2002). The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie van Leeuwenhoek 81:223–231 [View Article][PubMed]
    [Google Scholar]
  56. Zou Y., Guo X., Picardeau M., Xu H., Zhao G.( 2007). A comprehensive survey on isoleucine biosynthesis pathways in seven epidemic Leptospira interrogans reference strains of China. FEMS Microbiol Lett 269:90–96 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067280-0
Loading
/content/journal/micro/10.1099/mic.0.067280-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error