1887

Abstract

Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Hildenborough contain two terminal oxygen reductases, a quinol oxidase and a cytochrome oxidase (). Viability assays pointed out that single Δ Δ and double ΔΔ deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δ strain was slightly more sensitive than the Δ strain, pointing to the importance of the cytochrome oxidase in oxygen protection. Decreased O reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the quinol oxidase ( , 300 nM) was higher than that of the cytochrome oxidase ( , 620 nM). The total membrane activity of the quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the oxidase genes. In addition, analysis of the ΔΔ mutant strain indicated the presence of at least one O-scavenging membrane-bound system able to reduce O with menaquinol as electron donor with an O affinity that was two orders of magnitude lower than that of the quinol oxidase. The lower O reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium against oxygen stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.071282-0
2013-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2663.html?itemId=/content/journal/micro/10.1099/mic.0.071282-0&mimeType=html&fmt=ahah

References

  1. Abdollahi H., Wimpenny J. ( 1990). Effects of the oxygen on the growth of Desulfovibrio desulfuricans. . J Gen Microbiol 136:1025–1030 [View Article]
    [Google Scholar]
  2. Adams M. W., Mortenson L. E., Chen J. S. ( 1980). Hydrogenase. Biochim Biophys Acta 594:105–176 [View Article][PubMed]
    [Google Scholar]
  3. Baughn A. D., Malamy M. H. ( 2004). The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444 [View Article][PubMed]
    [Google Scholar]
  4. Baumgarten A., Redenius I., Kranczoch J., Cypionka H. ( 2001). Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol 176:306–309 [View Article][PubMed]
    [Google Scholar]
  5. Borisov V. B., Davletshin A. I., Konstantinov A. A. ( 2010). Peroxidase activity of cytochrome bd from Escherichia coli. . Biochemistry (Mosc) 75:428–436 [View Article][PubMed]
    [Google Scholar]
  6. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  7. Brochier-Armanet C., Talla E., Gribaldo S. ( 2009). The multiple evolutionary histories of dioxygen reductases: implications for the origin and evolution of aerobic respiration. Mol Biol Evol 26:285–297 [View Article][PubMed]
    [Google Scholar]
  8. Castresana J., Lübben M., Saraste M., Higgins D. G. ( 1994). Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J 13:2516–2525[PubMed]
    [Google Scholar]
  9. Cypionka H. ( 2000). Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848 [View Article][PubMed]
    [Google Scholar]
  10. Cypionka H., Widdel F., Pfennig N. ( 1985). Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen sulfide gradients. FEMS Microbiol Ecol 31:39–45 [View Article]
    [Google Scholar]
  11. Dolla A., Pohorelic B. K., Voordouw J. K., Voordouw G. ( 2000). Deletion of the hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment. Arch Microbiol 174:143–151 [View Article][PubMed]
    [Google Scholar]
  12. Fitz R. M., Cypionka H. ( 1989). A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. . Arch Microbiol 152:369–376 [View Article]
    [Google Scholar]
  13. Fournier M., Dermoun Z., Durand M. C., Dolla A. ( 2004). A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 279:1787–1793 [View Article][PubMed]
    [Google Scholar]
  14. Frazão C., Silva G., Gomes C. M., Matias P., Coelho R., Sieker L., Macedo S., Liu M. Y., Oliveira S. & other authors ( 2000). Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. . Nat Struct Biol 7:1041–1045 [View Article][PubMed]
    [Google Scholar]
  15. Fu R., Voordouw G. ( 1997). Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology 143:1815–1826 [View Article][PubMed]
    [Google Scholar]
  16. Gao X., Xin Y., Bell P. D., Wen J., Blankenship R. E. ( 2010). Structural analysis of alternative complex III in the photosynthetic electron transfer chain of Chloroflexus aurantiacus. . Biochemistry 49:6670–6679 [View Article][PubMed]
    [Google Scholar]
  17. Giuffrè A., Borisov V. B., Mastronicola D., Sarti P., Forte E. ( 2012). Cytochrome bd oxidase and nitric oxide: from reaction mechanisms to bacterial physiology. FEBS Lett 586:622–629 [View Article][PubMed]
    [Google Scholar]
  18. Hagen W. R. ( 1989). Direct electron transfer of redox proteins at the bare glassy carbon electrode. Eur J Biochem 182:523–530 [View Article][PubMed]
    [Google Scholar]
  19. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B. & other authors ( 2004). The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559 [View Article][PubMed]
    [Google Scholar]
  20. Ito T., Okabe S., Satoh H., Watanabe Y. ( 2002). Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Appl Environ Microbiol 68:1392–1402 [View Article][PubMed]
    [Google Scholar]
  21. Juty N. S., Moshiri F., Merrick M., Anthony C., Hill S. ( 1997). The Klebsiella pneumoniae cytochrome bd’ terminal oxidase complex and its role in microaerobic nitrogen fixation. Microbiology 143:2673–2683 [View Article][PubMed]
    [Google Scholar]
  22. Kitamura M., Mizugai K., Taniguchi M., Akutsu H., Kumagai I., Nakaya T. ( 1995). A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c-553 gene in the anaerobic bacterium, Desulfovibrio vulgaris (Miyazaki F). Microbiol Immunol 39:75–80[PubMed] [CrossRef]
    [Google Scholar]
  23. Kjeldsen K. U., Joulian C., Ingvorsen K. ( 2004). Oxygen tolerance of sulfate-reducing bacteria in activated sludge. Environ Sci Technol 38:2038–2043 [View Article][PubMed]
    [Google Scholar]
  24. Krekeler D., Teske A., Cypionka H. ( 1998). Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96 [CrossRef]
    [Google Scholar]
  25. Lamrabet O., Pieulle L., Aubert C., Mouhamar F., Stocker P., Dolla A., Brasseur G. ( 2011). Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases. Microbiology 157:2720–2732 [View Article][PubMed]
    [Google Scholar]
  26. Lemos R. S., Gomes C. M., Santana M., LeGall J., Xavier A. V., Teixeira M. ( 2001). The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett 496:40–43 [View Article][PubMed]
    [Google Scholar]
  27. Lobo S. A., Almeida C. C., Carita J. N., Teixeira M., Saraiva L. M. ( 2008). The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II. Biochim Biophys Acta 1777:1528–1534 [View Article][PubMed]
    [Google Scholar]
  28. Marschall C., Frenzel C., Cypionka H. ( 1993). Influence of oxygen on sulphate reduction and growth on sulfate-reducing bacteria. Arch Microbiol 159:168–173 [View Article]
    [Google Scholar]
  29. Mussmann M., Ishii K., Rabus R., Amann R. ( 2005). Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7:405–418 [View Article][PubMed]
    [Google Scholar]
  30. Pereira M. M., Santana M., Teixeira M. ( 2001). A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208 [View Article][PubMed]
    [Google Scholar]
  31. Pereira M. M., Refojo P. N., Hreggvidsson G. O., Hjorleifsdottir S., Teixeira M. ( 2007). The alternative complex III from Rhodothermus marinus – a prototype of a new family of quinol : electron acceptor oxidoreductases. FEBS Lett 581:4831–4835 [View Article][PubMed]
    [Google Scholar]
  32. Pires R. H., Venceslau S. S., Morais F., Teixeira M., Xavier A. V., Pereira I. A. ( 2006). Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex – a membrane-bound redox complex involved in the sulfate respiratory pathway. Biochemistry 45:249–262 [View Article][PubMed]
    [Google Scholar]
  33. Pitcher R. S., Brittain T., Watmough N. J. ( 2002). Cytochrome cbb(3) oxidase and bacterial microaerobic metabolism. Biochem Soc Trans 30:653–658 [View Article][PubMed]
    [Google Scholar]
  34. Poole R. K. ( 1983). Bacterial cytochrome oxidases. A structurally and functionally diverse group of electron-transfer proteins. Biochim Biophys Acta 726:205–243 [View Article][PubMed]
    [Google Scholar]
  35. Poole R. K., Hill S. ( 1997). Respiratory protection of nitrogenase activity in Azotobacter vinelandii – roles of the terminal oxidases. Biosci Rep 17:303–317 [View Article][PubMed]
    [Google Scholar]
  36. Postgate J. ( 1984). The Sulphate-reducing Bacteria, 2nd edn. Cambridge, U.K.: Cambridge University Press;
    [Google Scholar]
  37. Ravenschlag K., Sahm K., Knoblauch C., Jørgensen B. B., Amann R. ( 2000). Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Appl Environ Microbiol 66:3592–3602 [View Article][PubMed]
    [Google Scholar]
  38. Refojo P. N., Teixeira M., Pereira M. M. ( 2010). The alternative complex III of Rhodothermus marinus and its structural and functional association with caa 3 oxygen reductase. Biochim Biophys Acta 1797:1477–1482 [View Article][PubMed]
    [Google Scholar]
  39. Refojo P. N., Ribeiro M. A., Calisto F., Teixeira M., Pereira M. M. ( 2013). Structural composition of alternative complex III: variations on the same theme. Biochim Biophys Acta 1827:1378–1382 [View Article][PubMed]
    [Google Scholar]
  40. Santana M. ( 2008). Presence and expression of terminal oxygen reductases in strictly anaerobic sulfate-reducing bacteria isolated from salt-marsh sediments. Anaerobe 14:145–156 [View Article][PubMed]
    [Google Scholar]
  41. Santos H., Fareleira P., Xavier A. V., Chen L., Liu M. Y., LeGall J. ( 1993). Aerobic metabolism of carbon reserves by the “obligate anaerobe” Desulfovibrio gigas. . Biochem Biophys Res Commun 195:551–557 [View Article][PubMed]
    [Google Scholar]
  42. Sass H., Berchtold M., Branke J., König H., Cypionka H., Babenzien H. D. ( 1998a). Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21:212–219 [View Article][PubMed]
    [Google Scholar]
  43. Sass H., Wieringa E., Cypionka H., Babenzien H. D., Overmann J. ( 1998b). High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol 170:243–251 [View Article][PubMed]
    [Google Scholar]
  44. Shima S., Ataka K. ( 2011). Isocyanides inhibit [Fe]-hydrogenase with very high affinity. FEBS Lett 585:353–356 [View Article][PubMed]
    [Google Scholar]
  45. Teske A., Ramsing N. B., Habicht K., Fukui M., Küver J., Jørgensen B. B., Cohen Y. ( 1998). Sulfate-reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Appl Environ Microbiol 64:2943–2951[PubMed]
    [Google Scholar]
  46. Thauer R. K., Stackebrandt E., Hamilton W. A. ( 2007). Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. Sulphate-Reducing Bacteria, 1st edn.1–38 Barton L. L., Hamilton W. A. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  47. Venceslau S. S., Lino R. R., Pereira I. A. ( 2010). The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem 285:22774–22783 [View Article][PubMed]
    [Google Scholar]
  48. Voordouw G., Strang J. D., Wilson F. R. ( 1989). Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello. . J Bacteriol 171:3881–3889[PubMed]
    [Google Scholar]
  49. Weber M. M., Matschiner J. T., Peck H. D. ( 1970). Menaquinone-6 in the strict anaerobes Desulfovibrio vulgaris and Desulfovibrio gigas. . Biochem Biophys Res Commun 38:197–204 [View Article][PubMed]
    [Google Scholar]
  50. Wildschut J. D., Lang R. M., Voordouw J. K., Voordouw G. ( 2006). Rubredoxin : oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris Hildenborough under microaerophilic conditions. J Bacteriol 188:6253–6260 [View Article][PubMed]
    [Google Scholar]
  51. Yanyushin M. F., del Rosario M. C., Brune D. C., Blankenship R. E. ( 2005). New class of bacterial membrane oxidoreductases. Biochemistry 44:10037–10045 [View Article][PubMed]
    [Google Scholar]
  52. Zane G. M., Yen H. C., Wall J. D. ( 2010). Effect of the deletion of qmoABC and the promoter-distal gene encoding a hypothetical protein on sulfate reduction in Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 76:5500–5509 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.071282-0
Loading
/content/journal/micro/10.1099/mic.0.071282-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error