1887

Abstract

Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in . RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically.

Funding
This study was supported by the:
  • National Science Foundation
  • NSF (Award MCB– and MCB–0643516)
  • US Department of Energy (Award DE-FG02-91ER20021)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075192-0
2014-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/992.html?itemId=/content/journal/micro/10.1099/mic.0.075192-0&mimeType=html&fmt=ahah

References

  1. Anders S., Huber W. ( 2010). Differential expression analysis for sequence count data. Genome Biol 11:R106 [View Article][PubMed]
    [Google Scholar]
  2. Beauchamp C., Fridovich I. ( 1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287 [View Article][PubMed]
    [Google Scholar]
  3. Behrenfeld M. J., Bale A. J., Kolber Z. S., Aiken J., Falkowski P. G. ( 1996). Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511 [View Article]
    [Google Scholar]
  4. Benešová J., Ničková K., Ferimazova N., Štys D. ( 2000). Morphological and physiological differences in Synechococcus elongatus during continuous cultivation at high iron, low iron, and iron deficient medium. Photosynthetica 38:233–241 [View Article]
    [Google Scholar]
  5. Bhaya D., Schwarz R., Grossman A. R. ( 2000). Molecular responses to environmental stresses. Ecology of Cyanobacteria: Their Diversity in Time and Space397–442 Whitton B. A., Potts M. Dordrecht: Kluwer;
    [Google Scholar]
  6. Boekema E. J., Hifney A., Yakushevska A. E., Piotrowski M., Keegstra W., Berry S., Michel K. P., Pistorius E. K., Kruip J. ( 2001). A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748 [View Article][PubMed]
    [Google Scholar]
  7. Bordowitz J. R., Montgomery B. L. ( 2008). Photoregulation of cellular morphology during complementary chromatic adaptation requires sensor-kinase-class protein RcaE in Fremyella diplosiphon . J Bacteriol 190:4069–4074 [View Article][PubMed]
    [Google Scholar]
  8. Bordowitz J. R., Montgomery B. L. ( 2010). Exploiting the autofluorescent properties of photosynthetic pigments for analysis of pigmentation and morphology in live Fremyella diplosiphon cells. Sensors (Basel) 10:6969–6979 [View Article][PubMed]
    [Google Scholar]
  9. Bordowitz J. R., Whitaker M. J., Montgomery B. L. ( 2010). Independence and interdependence of the photoregulation of pigmentation and development in Fremyella diplosiphon . Commun Integr Biol 3:151–153 [View Article][PubMed]
    [Google Scholar]
  10. Campbell D. ( 1996). Complementary chromatic adaptation alters photosynthetic strategies in the cyanobacterium Calothrix . Microbiology 142:1255–1263 [View Article][PubMed]
    [Google Scholar]
  11. Castagna A., Donnini S., Ranieri A. ( 2009). Adaptation to iron-deficiency requires remodelling of plant metabolism: an insight in chloroplast biochemistry and functionality. Salinity and Water Stress205–212 Ashraf M., Ozturk M., Athar H. R. Dordrecht: Springer; [View Article]
    [Google Scholar]
  12. Cobley J. G., Zerweck E., Reyes R., Mody A., Seludo-Unson J. R., Jaeger H., Weerasuriya S., Navankasattusas S. ( 1993). Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium, Fremyella diplosiphon . Plasmid 30:90–105 [View Article][PubMed]
    [Google Scholar]
  13. Connolly E. L., Guerinot M. ( 2002). Iron stress in plants. Genome Biol 3:S1024 [View Article][PubMed]
    [Google Scholar]
  14. Dammeyer T., Frankenberg-Dinkel N. ( 2008). Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem Photobiol Sci 7:1121–1130 [View Article][PubMed]
    [Google Scholar]
  15. de Silva D. M., Askwith C. C., Kaplan J. ( 1996). Molecular mechanisms of iron uptake in eukaryotes. Physiol Rev 76:31–47[PubMed]
    [Google Scholar]
  16. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L. ( 2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679 [View Article][PubMed]
    [Google Scholar]
  17. Ekman M., Sandh G., Nenninger A., Oliveira P., Stensjö K. ( 2014). Cellular and functional specificity among ferritin-like proteins in the multicellular cyanobacterium Nostoc punctiforme. . Environ Microbiol 16:829–844 [View Article][PubMed]
    [Google Scholar]
  18. Ferreira F., Straus N. A. ( 1994). Iron deprivation in cyanobacteria. J Appl Phycol 6:199–210 [View Article]
    [Google Scholar]
  19. Fraser J. M., Tulk S. E., Jeans J. A., Campbell D. A., Bibby T. S., Cockshutt A. M. ( 2013). Photophysiological and photosynthetic complex changes during iron starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. PLoS ONE 8:e59861 [View Article][PubMed]
    [Google Scholar]
  20. Gutu A., Kehoe D. M. ( 2012). Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol Plant 5:1–13 [View Article][PubMed]
    [Google Scholar]
  21. Hantke K. ( 2001). Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177 [View Article][PubMed]
    [Google Scholar]
  22. Hardie L. P., Balkwill D. L., Stevens S. E. Jr ( 1983a). Effects of iron starvation on the physiology of the cyanobacterium Agmenellum quadruplicatum . Appl Environ Microbiol 45:999–1006[PubMed]
    [Google Scholar]
  23. Hardie L. P., Balkwill D. L., Stevens S. E. Jr ( 1983b). Effects of iron starvation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum . Appl Environ Microbiol 45:1007–1017[PubMed]
    [Google Scholar]
  24. He Y. Y., Häder D. P. ( 2002). Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. J Photochem Photobiol B 66:73–80 [View Article][PubMed]
    [Google Scholar]
  25. Kahn K., Mazel D., Houmard J., Tandeau de Marsac N., Schaefer M. R. ( 1997). A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179:998–1006[PubMed]
    [Google Scholar]
  26. Kehoe D. M., Grossman A. R. ( 1996). Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412 [View Article][PubMed]
    [Google Scholar]
  27. Kehoe D. M., Grossman A. R. ( 1997). New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol 179:3914–3921[PubMed]
    [Google Scholar]
  28. Kehoe D. M., Gutu A. ( 2006). Responding to color: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol 57:127–150 [View Article][PubMed]
    [Google Scholar]
  29. Keren N., Aurora R., Pakrasi H. B. ( 2004). Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol 135:1666–1673 [View Article][PubMed]
    [Google Scholar]
  30. Küpper H., Setlík I., Seibert S., Prásil O., Šetlikova E., Strittmatter M., Levitan O., Lohscheider J., Adamska I., Berman-Frank I. ( 2008). Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. New Phytol 179:784–798 [View Article][PubMed]
    [Google Scholar]
  31. Langmead B., Trapnell C., Pop M., Salzberg S. L. ( 2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25 [View Article][PubMed]
    [Google Scholar]
  32. Latifi A., Jeanjean R., Lemeille S., Havaux M., Zhang C.-C. ( 2005). Iron starvation leads to oxidative stress in Anabaena sp. strain PCC 7120. J Bacteriol 187:6596–6598 [View Article][PubMed]
    [Google Scholar]
  33. Latifi A., Ruiz M., Zhang C. C. ( 2009). Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33:258–278 [View Article][PubMed]
    [Google Scholar]
  34. Lax J. E., Arteni A. A., Boekema E. J., Pistorius E. K., Michel K. P., Rögner M. ( 2007). Structural response of photosystem 2 to iron deficiency: characterization of a new photosystem 2-IdiA complex from the cyanobacterium Thermosynechococcus elongatus BP-1. Biochim Biophys Acta 1767:528–534 [View Article][PubMed]
    [Google Scholar]
  35. Lemasson C., Marsac N. T., Cohen-Bazire G. ( 1973). Role of allophycocyanin as light-harvesting pigment in cyanobacteria. Proc Natl Acad Sci U S A 70:3130–3133 [View Article][PubMed]
    [Google Scholar]
  36. Michel K. P., Pistorius E. K. ( 2004). Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency: the function of IdiA and IsiA. Physiol Plant 120:36–50 [View Article][PubMed]
    [Google Scholar]
  37. Montgomery B. L., Pattanaik B. ( 2010). Regulation during adaptation of cyanobacteria to changes in iron availability: a case study of responses to iron limitation in Fremyella diplosiphon . Biometals: Molecular Structures, Binding Properties and Applications (Biotechnology in Agriculture, Industry and Medicine)215–226 Blanc G., Moreau D. Hauppauge, NY: Nova Science;
    [Google Scholar]
  38. Narayan O. P., Kumari N., Rai L. C. ( 2011). Iron starvation-induced proteomic changes in Anabaena (Nostoc) sp. PCC 7120: exploring survival strategy. J Microbiol Biotechnol 21:136–146 [View Article][PubMed]
    [Google Scholar]
  39. Pattanaik B., Montgomery B. L. ( 2010). FdTonB is involved in the photoregulation of cellular morphology during complementary chromatic adaptation in Fremyella diplosiphon . Microbiology 156:731–741 [View Article][PubMed]
    [Google Scholar]
  40. Rastogi R. P., Singh S. P., Häder D.-P., Sinha R. P. ( 2010). Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun 397:603–607 [View Article][PubMed]
    [Google Scholar]
  41. Regelsberger G., Laaha U., Dietmann D., Rüker F., Canini A., Grilli-Caiola M., Furtmüller P. G., Jakopitsch C., Peschek G. A., Obinger C. ( 2004). The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization. J Biol Chem 279:44384–44393 [View Article][PubMed]
    [Google Scholar]
  42. Sandström S., Ivanov A. G., Park Y. I., Öquist G., Gustafsson P. ( 2002). Iron stress responses in the cyanobacterium Synechococcus sp. PCC7942. Physiol Plant 116:255–263 [View Article][PubMed]
    [Google Scholar]
  43. Shcolnick S., Keren N. ( 2006). Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810 [View Article][PubMed]
    [Google Scholar]
  44. Sherman D. M., Sherman L. A. ( 1983). Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans . J Bacteriol 156:393–401[PubMed]
    [Google Scholar]
  45. Singh S. P., Montgomery B. L. ( 2011). Temporal responses of wild-type pigmentation and RcaE-deficient strains of Fremyella diplosiphon during light transitions. Commun Integr Biol 4:503–510[PubMed] [CrossRef]
    [Google Scholar]
  46. Singh S. P., Montgomery B. L. ( 2012). Reactive oxygen species are involved in the morphology-determining mechanism of Fremyella diplosiphon cells during complementary chromatic adaptation. Microbiology 158:2235–2245 [View Article][PubMed]
    [Google Scholar]
  47. Singh S. P., Montgomery B. L. ( 2013). Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape. Plant Signal Behav 8:e24713 [View Article][PubMed]
    [Google Scholar]
  48. Sterner R. W., Smutka T. M., McKay R. M. L., Xiaoming Q., Brown E. T., Sherrell R. M. ( 2004). Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol Oceanogr 49:495–507 [View Article]
    [Google Scholar]
  49. Stowe-Evans E. L., Ford J., Kehoe D. M. ( 2004). Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon . J Bacteriol 186:4338–4349 [View Article][PubMed]
    [Google Scholar]
  50. Straus N. A. ( 1994). Iron deprivation: physiology and gene regulation. The Molecular Biology of Cyanobacteria (Advances in Photosynthesis and Respiration) vol. 1731–750 Bryant D. A. Dordrecht: Kluwer; [View Article]
    [Google Scholar]
  51. Tandeau de Marsac N. ( 1977). Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91[PubMed]
    [Google Scholar]
  52. Tandeau de Marsac N., Houmard J. ( 1988). Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol 167:318–328 [View Article]
    [Google Scholar]
  53. Terry M. J., Linley P. J., Kohchi T. ( 2002). Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans 30:604–609 [View Article][PubMed]
    [Google Scholar]
  54. Thompson A. W., Huang K., Saito M. A., Chisholm S. W. ( 2011). Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J 5:1580–1594 [View Article][PubMed]
    [Google Scholar]
  55. Twiss M. R., Auclair J.-C., Charlton M. N. ( 2000). An investigation into iron-stimulated phytoplankton productivity in epipelagic Lake Erie during thermal stratification using trace metal clean techniques. Can J Fish Aquat Sci 57:86–95 [View Article]
    [Google Scholar]
  56. Walker E. L., Connolly E. L. ( 2008). Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535 [View Article][PubMed]
    [Google Scholar]
  57. Xing W., Huang W. M., Li D. H., Liu Y. D. ( 2007). Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii . Curr Microbiol 55:94–98 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075192-0
Loading
/content/journal/micro/10.1099/mic.0.075192-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error