1887

Abstract

The influence of iron levels on the transcription of the gene in is the focus of this study. Studies in our laboratory showed HupB to be co-expressed with the two siderophores in low-iron organisms. Mycobactin biosynthesis is repressed by the IdeR–Fe complex that binds the IdeR box in the promoter. Recently, we demonstrated the positive regulatory effect of HupB on mycobactin biosynthesis by demonstrating its binding to a 10 bp HupB box in the promoter. Earlier, we observed that HupB, expressed maximally in low-iron media (0.02 µg Fe ml; 0.36 µM Fe) was still detectable at 8 µg Fe ml (144 µM Fe) when the siderophores were absent and complete repression was seen only at 12 µg Fe ml (216 µM Fe). In this study, we observed elevated levels of transcripts in iron-limited organisms. IdeR, and not FurA, functioned as the iron regulator, by binding to two IdeR boxes in the promoter. Interestingly, the 10 bp HupB box, first reported in the promoter, was identified in the promoter. Using DNA footprinting and electrophoretic mobility shift assays, we demonstrated the functionality of the HupB box and the two IdeR boxes. The high transcript levels expressed by the organism and the protein–DNA interaction studies led us to hypothesize the sequence of events occurring in response to changes in the intracellular iron concentration, emphasizing the roles played by IdeR and HupB in iron homeostasis.

Funding
This study was supported by the:
  • Council of Scientific and Industrial Research
  • University Grants Commission
  • Department of Biotechnology (Award BT/01/COE/07/02)
  • UGC-SAP & DBT-CREBB
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079640-0
2014-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1637.html?itemId=/content/journal/micro/10.1099/mic.0.079640-0&mimeType=html&fmt=ahah

References

  1. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. & other authors ( 1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  2. De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E. III ( 2000). The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257 [View Article][PubMed]
    [Google Scholar]
  3. Dussurget O., Timm J., Gomez M., Gold B., Yu S., Sabol S. Z., Holmes R. K., Jacobs W. R. Jr, Smith I. ( 1999). Transcriptional control of the iron-responsive fxbA gene by the mycobacterial regulator IdeR. J Bacteriol 181:3402–3408[PubMed]
    [Google Scholar]
  4. Gold B., Rodriguez G. M., Marras S. A., Pentecost M., Smith I. ( 2001). The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42:851–865 [View Article][PubMed]
    [Google Scholar]
  5. Katsube T., Matsumoto S., Takatsuka M., Okuyama M., Ozeki Y., Naito M., Nishiuchi Y., Fujiwara N., Yoshimura M. & other authors ( 2007). Control of cell wall assembly by a histone-like protein in mycobacteria. J Bacteriol 189:8241–8249 [View Article][PubMed]
    [Google Scholar]
  6. Kumar S., Sardesai A. A., Basu D., Muniyappa K., Hasnain S. E. ( 2010). DNA clasping by mycobacterial HU: the C-terminal region of HupB mediates increased specificity of DNA binding. PLoS ONE 5:e12551 [View Article][PubMed]
    [Google Scholar]
  7. Kumar M., Khan F. G., Sharma S., Kumar R., Faujdar J., Sharma R., Chauhan D. S., Singh R., Magotra S. K., Khan I. A. ( 2011). Identification of Mycobacterium tuberculosis genes preferentially expressed during human infection. Microb Pathog 50:31–38 [View Article][PubMed]
    [Google Scholar]
  8. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  9. Manabe Y. C., Saviola B. J., Sun L., Murphy J. R., Bishai W. R. ( 1999). Attenuation of virulence in Mycobacterium tuberculosis expressing a constitutively active iron repressor. Proc Natl Acad Sci U S A 96:12844–12848 [View Article][PubMed]
    [Google Scholar]
  10. Pandey S. D., Choudhury M., Yousuf S., Wheeler P. R., Gordon S. V., Ranjan A., Sritharan M. ( 2014). Iron-regulated protein HupB of Mycobacterium tuberculosis positively regulates siderophore biosynthesis and is essential for growth in macrophages. J Bacteriol 196:1853–1865 [View Article][PubMed]
    [Google Scholar]
  11. Prabhakar S., Annapurna P. S., Annapurna P. S., Jain N. K., Dey A. B., Tyagi J. S., Prasad H. K. ( 1998). Identification of an immunogenic histone-like protein (HLPMt) of Mycobacterium tuberculosis. Tuber Lung Dis 79:43–53 [View Article][PubMed]
    [Google Scholar]
  12. Prakash P., Yellaboina S., Ranjan A., Hasnain S. E. ( 2005). Computational prediction and experimental verification of novel IdeR binding sites in the upstream sequences of Mycobacterium tuberculosis open reading frames. Bioinformatics 21:2161–2166 [View Article][PubMed]
    [Google Scholar]
  13. Quadri L. E., Ratledge C. ( 2005). Iron metabolism in the tubercle bacillus and other mycobacteria. Tuberculosis and the Tubercle Bacillus341–357 Cole S. T., Eisenach K. D., McMurray D. N., Jacobs W. R. Jr Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  14. Quadri L. E., Sello J., Keating T. A., Weinreb P. H., Walsh C. T. ( 1998). Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. Chem Biol 5:631–645 [View Article][PubMed]
    [Google Scholar]
  15. Ratledge C., Dover L. G. ( 2000). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [View Article][PubMed]
    [Google Scholar]
  16. Rodriguez G. M., Gold B., Gomez M., Dussurget O., Smith I. ( 1999). Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tuber Lung Dis 79:287–298 [View Article][PubMed]
    [Google Scholar]
  17. Schmitt M. P., Predich M., Doukhan L., Smith I., Holmes R. K. ( 1995). Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect Immun 63:4284–4289[PubMed]
    [Google Scholar]
  18. Sharadamma N., Khan K., Kumar S., Patil K. N., Hasnain S. E., Muniyappa K. ( 2011). Synergy between the N-terminal and C-terminal domains of Mycobacterium tuberculosis HupB is essential for high-affinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange. FEBS J 278:3447–3462 [View Article][PubMed]
    [Google Scholar]
  19. Sivakolundu S., Mannela U. D., Jain S., Srikantam A., Peri S., Pandey S. D., Sritharan M. ( 2013). Serum iron profile and ELISA-based detection of antibodies against the iron-regulated protein HupB of Mycobacterium tuberculosis in TB patients and household contacts in Hyderabad (Andhra Pradesh), India. Trans R Soc Trop Med Hyg 107:43–50 [View Article][PubMed]
    [Google Scholar]
  20. Soares de Lima C., Zulianello L., Marques M. A., Kim H., Portugal M. I., Antunes S. L., Menozzi F. D., Ottenhoff T. H., Brennan P. J., Pessolani M. C. ( 2005). Mapping the laminin-binding and adhesive domain of the cell surface-associated Hlp/LBP protein from Mycobacterium leprae. Microbes Infect 7:1097–1109 [View Article][PubMed]
    [Google Scholar]
  21. Sritharan M. ( 2006). Iron and bacterial virulence. Indian J Med Microbiol 24:163–164[PubMed]
    [Google Scholar]
  22. Sritharan M., Ratledge C. ( 1990). Iron-regulated envelope proteins of mycobacteria grown in vitro and their occurrence in Mycobacterium avium and Mycobacterium leprae grown in vivo. Biol Met 2:203–208 [View Article][PubMed]
    [Google Scholar]
  23. Takatsuka M., Osada-Oka M., Satoh E. F., Kitadokoro K., Nishiuchi Y., Niki M., Inoue M., Iwai K., Arakawa T. & other authors ( 2011). A histone-like protein of mycobacteria possesses ferritin superfamily protein-like activity and protects against DNA damage by Fenton reaction. PLoS ONE 6:e20985 [View Article][PubMed]
    [Google Scholar]
  24. WHO ( 2012). Global Tuberculosis Report 2012 Geneva: WHO;
    [Google Scholar]
  25. Wisedchaisri G., Holmes R. K., Hol W. G. ( 2004). Crystal structure of an IdeR–DNA complex reveals a conformational change in activated IdeR for base-specific interactions. J Mol Biol 342:1155–1169 [View Article][PubMed]
    [Google Scholar]
  26. Yeruva V. C., Duggirala S., Lakshmi V., Kolarich D., Altmann F., Sritharan M. ( 2006). Identification and characterization of a major cell wall-associated iron-regulated envelope protein (Irep-28) in Mycobacterium tuberculosis. Clin Vaccine Immunol 13:1137–1142 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079640-0
Loading
/content/journal/micro/10.1099/mic.0.079640-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error