1887

Abstract

-Proline is a widely used compatible solute and is employed by , through both synthesis and uptake, as an osmostress protectant. Here, we assessed the stress-protective potential of the plant-derived -proline derivatives -methyl--proline, -proline betaine (stachydrine), -4--hydroxproline and -4-hydroxy--proline betaine (betonicine) for cells challenged by high salinity or extremes in growth temperature. -Proline betaine and betonicine conferred salt stress protection, but -4--hydroxyproline and -methyl--proline was unable to do so. Except for -proline, none of these compounds served as a nutrient for . -Proline betaine was a considerably better osmostress protectant than betonicine, and its import strongly reduced the -proline pool produced by under osmotic stress conditions, whereas a supply of betonicine affected the -proline pool only modestly. Both compounds downregulated the transcription of the osmotically inducible operon, albeit to different extents. Mutant studies revealed that -proline betaine was taken up via the ATP-binding cassette transporters OpuA and OpuC, and the betaine-choline-carnitine-transporter-type carrier OpuD; betonicine was imported only through OpuA and OpuC. -Proline betaine and betonicine also served as temperature stress protectants. A striking difference between these chemically closely related compounds was observed: -proline betaine was an excellent cold stress protectant, but did not provide heat stress protection, whereas the reverse was true for betonicine. Both compounds were primarily imported in temperature-challenged cells via the high-capacity OpuA transporter. We developed an model for the OpuAC–betonicine complex based on the crystal structure of the OpuAC solute receptor complexed with -proline betaine.

Funding
This study was supported by the:
  • LOEWE Program of the State of Hessen
  • Fonds der Chemischen Industrie
  • Deutsche Akademische Austauschdienst
  • Max-Planck-Institute for Terrestrial Microbiology
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079665-0
2014-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2283.html?itemId=/content/journal/micro/10.1099/mic.0.079665-0&mimeType=html&fmt=ahah

References

  1. Alloing G., Travers I., Sagot B., Le Rudulier D., Dupont L. ( 2006). Proline betaine uptake in Sinorhizobium meliloti: characterization of Prb, an Opp-like ABC transporter regulated by both proline betaine and salinity stress. J Bacteriol 188:6308–6317 [View Article][PubMed]
    [Google Scholar]
  2. Amin U. S., Lash T. D., Wilkinson B. J. ( 1995). Proline betaine is a highly effective osmoprotectant for Staphylococcus aureus. Arch Microbiol 163:138–142 [View Article][PubMed]
    [Google Scholar]
  3. Bashir A., Hoffmann T., Smits S. H., Bremer E. ( 2014). Dimethylglycine provides salt and temperature stress protection to Bacillus subtilis. Appl Environ Microbiol 80:2773–2785 [View Article][PubMed]
    [Google Scholar]
  4. Bayles D. O., Wilkinson B. J. ( 2000). Osmoprotectants and cryoprotectants for Listeria monocytogenes. Lett Appl Microbiol 30:23–27 [View Article][PubMed]
    [Google Scholar]
  5. Belda E., Sekowska A., Le Fèvre F., Morgat A., Mornico D., Ouzounis C., Vallenet D., Médigue C., Danchin A. ( 2013). An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology 159:757–770 [View Article][PubMed]
    [Google Scholar]
  6. Belitsky B. R. ( 2011). Indirect repression by Bacillus subtilis CodY via displacement of the activator of the proline utilization operon. J Mol Biol 413:321–336 [View Article][PubMed]
    [Google Scholar]
  7. Boch J., Kempf B., Bremer E. ( 1994). Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J Bacteriol 176:5364–5371[PubMed]
    [Google Scholar]
  8. Bourot S., Sire O., Trautwetter A., Touzé T., Wu L. F., Blanco C., Bernard T. ( 2000). Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli.. J Biol Chem 275:1050–1056 [View Article][PubMed]
    [Google Scholar]
  9. Bremer E. ( 2002). Adaptation to changing osmolarity. Bacillus subtilis and its Closes Relatives: From Genes to Cells385–391 Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  10. Bremer E., Krämer R. ( 2000). Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes. Bacterial Stress Responses79–97 Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  11. Brill J., Hoffmann T., Bleisteiner M., Bremer E. ( 2011a). Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J Bacteriol 193:5335–5346 [View Article][PubMed]
    [Google Scholar]
  12. Brill J., Hoffmann T., Putzer H., Bremer E. ( 2011b). T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology 157:977–987 [View Article][PubMed]
    [Google Scholar]
  13. Budde I., Steil L., Scharf C., Völker U., Bremer E. ( 2006). Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152:831–853 [View Article][PubMed]
    [Google Scholar]
  14. Cayley S., Lewis B. A., Record M. T. Jr ( 1992). Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J Bacteriol 174:1586–1595[PubMed]
    [Google Scholar]
  15. Chattopadhyay M. K., Kern R., Mistou M. Y., Dandekar A. M., Uratsu S. L., Richarme G. ( 2004). The chemical chaperone proline relieves the thermosensitivity of a dnaK deletion mutant at 42 degrees C. J Bacteriol 186:8149–8152 [View Article][PubMed]
    [Google Scholar]
  16. Csonka L. N. ( 1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147[PubMed]
    [Google Scholar]
  17. Diamant S., Eliahu N., Rosenthal D., Goloubinoff P. ( 2001). Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591 [View Article][PubMed]
    [Google Scholar]
  18. Emsley P., Cowtan K. ( 2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132 [View Article][PubMed]
    [Google Scholar]
  19. Fisher M. T. ( 2006). Proline to the rescue. Proc Natl Acad Sci U S A 103:13265–13266 [View Article][PubMed]
    [Google Scholar]
  20. Gotsche S., Dahl M. K. ( 1995). Purification and characterization of the phospho-alpha(1,1)glucosidase (TreA) of Bacillus subtilis 168. J Bacteriol 177:2721–2726[PubMed]
    [Google Scholar]
  21. Graumann P., Marahiel M. A. ( 1996). Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300 [View Article][PubMed]
    [Google Scholar]
  22. Haardt M., Kempf B., Faatz E., Bremer E. ( 1995). The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. Mol Gen Genet 246:783–796 [View Article][PubMed]
    [Google Scholar]
  23. Hanson A. D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M. O., Gage D. A. ( 1994). Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A 91:306–310 [View Article][PubMed]
    [Google Scholar]
  24. Harwood C. R., Archibald A. R. ( 1990). Growth, maintenance and general techniques. Molecular Biological Methods for Bacillus1–26 Harwood C. R., Cutting S. M. Chichester: Wiley;
    [Google Scholar]
  25. Hecker M., Pané-Farré J., Völker U. ( 2007). SigB-dependent general stress response in Bacillus subtilis and related Gram-positive bacteria. Annu Rev Microbiol 61:215–236 [View Article][PubMed]
    [Google Scholar]
  26. Hoffmann T., Bremer E. ( 2011). Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193:1552–1562 [View Article][PubMed]
    [Google Scholar]
  27. Hoffmann T., von Blohn C., Stanek A., Moses S., Barzantny H., Bremer E. ( 2012). Synthesis, release, and recapture of compatible solute proline by osmotically stressed Bacillus subtilis cells. Appl Environ Microbiol 78:5753–5762 [View Article][PubMed]
    [Google Scholar]
  28. Hoffmann T., Wensing A., Brosius M., Steil L., Völker U., Bremer E. ( 2013). Osmotic control of opuA expression in Bacillus subtilis and its modulation in response to intracellular glycine betaine and proline pools. J Bacteriol 195:510–522 [View Article][PubMed]
    [Google Scholar]
  29. Holtmann G., Bremer E. ( 2004). Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 186:1683–1693 [View Article][PubMed]
    [Google Scholar]
  30. Horn C., Sohn-Bösser L., Breed J., Welte W., Schmitt L., Bremer E. ( 2006). Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J Mol Biol 357:592–606 [View Article][PubMed]
    [Google Scholar]
  31. Huang S. C., Lin T. H., Shaw G. C. ( 2011). PrcR, a PucR-type transcriptional activator, is essential for proline utilization and mediates proline-responsive expression of the proline utilization operon putBCP in Bacillus subtilis. Microbiology 157:3370–3377 [View Article][PubMed]
    [Google Scholar]
  32. Ignatova Z., Gierasch L. M. ( 2006). Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci U S A 103:13357–13361 [View Article][PubMed]
    [Google Scholar]
  33. Jackson-Atogi R., Sinha P. K., Rösgen J. ( 2013). Distinctive solvation patterns make renal osmolytes diverse. Biophys J 105:2166–2174 [View Article][PubMed]
    [Google Scholar]
  34. Kappes R. M., Kempf B., Bremer E. ( 1996). Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178:5071–5079[PubMed]
    [Google Scholar]
  35. Kappes R. M., Kempf B., Kneip S., Boch J., Gade J., Meier-Wagner J., Bremer E. ( 1999). Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 32:203–216 [View Article][PubMed]
    [Google Scholar]
  36. Kempf B., Bremer E. ( 1995). OpuA, an osmotically regulated binding protein-dependent transport system for the osmoprotectant glycine betaine in Bacillus subtilis. J Biol Chem 270:16701–16713 [View Article][PubMed]
    [Google Scholar]
  37. Kempf B., Bremer E. ( 1998). Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330 [View Article][PubMed]
    [Google Scholar]
  38. Kohlstedt M., Sappa P. K., Meyer H., Maaß S., Zaprasis A., Hoffmann T., Becker J., Steil L., Hecker M. & other authors ( 2014). Adaptation of Bacillus subtilis carbon core metabolism to simultaneous nutrient limitation and osmotic challenge: a multi-omics perspective. Environ Microbiol 16:1898–1917 [View Article][PubMed]
    [Google Scholar]
  39. Kuhlmann A. U., Bremer E. ( 2002). Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl Environ Microbiol 68:772–783 [View Article][PubMed]
    [Google Scholar]
  40. Kumar R., Zhao S., Vetting M. W., Wood B. M., Sakai A., Cho K., Solbiati J., Almo S. C., Sweedler J. V. & other authors ( 2014). Prediction and biochemical demonstration of a catabolic pathway for the osmoprotectant proline betaine. MBio 5:e00933-13 [View Article][PubMed]
    [Google Scholar]
  41. Manzanera M., García de Castro A., Tøndervik A., Rayner-Brandes M., Strøm A. R., Tunnacliffe A. ( 2002). Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol 68:4328–4333 [View Article][PubMed]
    [Google Scholar]
  42. Martín M., de Mendoza D. ( 2013). Regulation of Bacillus subtilis DesK thermosensor by lipids. Biochem J 451:269–275 [View Article][PubMed]
    [Google Scholar]
  43. Moe L. A. ( 2013). Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100:1692–1705 [View Article][PubMed]
    [Google Scholar]
  44. Moses S., Sinner T., Zaprasis A., Stöveken N., Hoffmann T., Belitsky B. R., Sonenshein A. L., Bremer E. ( 2012). Proline utilization by Bacillus subtilis: uptake and catabolism. J Bacteriol 194:745–758 [View Article][PubMed]
    [Google Scholar]
  45. Murshudov G. N., Vagin A. A., Dodson E. J. ( 1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255 [View Article][PubMed]
    [Google Scholar]
  46. Rhodes D., Hanson A. D. ( 1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384 [View Article]
    [Google Scholar]
  47. Schiefner A., Breed J., Bösser L., Kneip S., Gade J., Holtmann G., Diederichs K., Welte W., Bremer E. ( 2004a). Cation–pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from Escherichia coli. J Biol Chem 279:5588–5596 [View Article][PubMed]
    [Google Scholar]
  48. Schiefner A., Holtmann G., Diederichs K., Welte W., Bremer E. ( 2004b). Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 279:48270–48281 [View Article][PubMed]
    [Google Scholar]
  49. Schumann W. ( 2003). The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207–217 [View Article][PubMed]
    [Google Scholar]
  50. Servillo L., Giovane A., Balestrieri M. L., Bata-Csere A., Cautela D., Castaldo D. ( 2011). Betaines in fruits of Citrus genus plants. J Agric Food Chem 59:9410–9416 [View Article][PubMed]
    [Google Scholar]
  51. Smits S. H., Höing M., Lecher J., Jebbar M., Schmitt L., Bremer E. ( 2008). The compatible-solute-binding protein OpuAC from Bacillus subtilis: ligand binding, site-directed mutagenesis, and crystallographic studies. J Bacteriol 190:5663–5671 [View Article][PubMed]
    [Google Scholar]
  52. Street T. O., Bolen D. W., Rose G. D. ( 2006). A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci U S A 103:13997–14002 [View Article][PubMed]
    [Google Scholar]
  53. Trinchant J. C., Boscari A., Spennato G., Van de Sype G., Le Rudulier D. ( 2004). Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol 135:1583–1594 [View Article][PubMed]
    [Google Scholar]
  54. von Blohn C., Kempf B., Kappes R. M., Bremer E. ( 1997). Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Mol Microbiol 25:175–187 [View Article][PubMed]
    [Google Scholar]
  55. Warren C. R. ( 2013). Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol 198:476–485 [View Article][PubMed]
    [Google Scholar]
  56. Warren C. R. ( 2014). Response of osmolytes in soil to drying and rewetting. Soil Biol Biochem 70:22–32 [View Article]
    [Google Scholar]
  57. Watanabe S., Morimoto D., Fukumori F., Shinomiya H., Nishiwaki H., Kawano-Kawada M., Sasai Y., Tozawa Y., Watanabe Y. ( 2012). Identification and characterization of d-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate deaminase involved in novel d-hydroxyproline metabolism of bacteria: metabolic convergent evolution. J Biol Chem 287:32674–32688 [View Article][PubMed]
    [Google Scholar]
  58. Whatmore A. M., Chudek J. A., Reed R. H. ( 1990). The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535 [View Article][PubMed]
    [Google Scholar]
  59. White C. E., Gavina J. M., Morton R., Britz-McKibbin P., Finan T. M. ( 2012). Control of hydroxyproline catabolism in Sinorhizobium meliloti. Mol Microbiol 85:1133–1147 [View Article][PubMed]
    [Google Scholar]
  60. Wiegeshoff F., Marahiel M. A. ( 2007). Characterization of a mutation in the acetolactate synthase of Bacillus subtilis that causes a cold-sensitive phenotype. FEMS Microbiol Lett 272:30–34 [View Article][PubMed]
    [Google Scholar]
  61. Wolters J. C., Berntsson R. P., Gul N., Karasawa A., Thunnissen A. M., Slotboom D. J., Poolman B. ( 2010). Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA. PLoS ONE 5:e10361 [View Article][PubMed]
    [Google Scholar]
  62. Wood J. M. ( 2011). Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annu Rev Microbiol 65:215–238 [View Article][PubMed]
    [Google Scholar]
  63. Zaprasis A., Brill J., Thüring M., Wünsche G., Heun M., Barzantny H., Hoffmann T., Bremer E. ( 2013). Osmoprotection of Bacillus subtilis through import and proteolysis of proline-containing peptides. Appl Environ Microbiol 79:576–587 [View Article][PubMed]
    [Google Scholar]
  64. Zaprasis A., Hoffmann T., Stannek L., Gunka K., Commichau F. M., Bremer E. ( 2014). The γ-aminobutyrate permease GabP serves as the third proline transporter of Bacillus subtilis. J Bacteriol 196:515–526 [View Article][PubMed]
    [Google Scholar]
  65. Zhao S., Kumar R., Sakai A., Vetting M. W., Wood B. M., Brown S., Bonanno J. B., Hillerich B. S., Seidel R. D. & other authors ( 2013). Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature 502:698–702 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079665-0
Loading
/content/journal/micro/10.1099/mic.0.079665-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error