1887

Abstract

The present study assessed the role of membrane components of A (ATCC 12633) under chemical stress conditions originated by treatment with tetradecyltrimethylammonium bromide (TTAB), a cationic surfactant. We examined changes in fatty acid composition and in the fluidity of the membranes of cells exposed to TTAB at a specific point of growth as well as of cells growing with TTAB. The addition of 10–50 mg TTAB l promoted an increase in the saturated/unsaturated fatty acid ratio. By using fluorescence polarization techniques, we found that TTAB exerted a fluidizing effect on A (ATCC 12633) membranes. However, a complete reversal of induced membrane fluidification was detected after 15 min of incubation with TTAB. Consistently, the proportion of unsaturated fatty acids was lower in TTAB-treated cells as compared with non-treated cells. In the presence of TTAB, the content of phosphatidylglycerol increased (120 %), whilst that of cardiolipin decreased (60 %). Analysis of the fatty acid composition of A (ATCC 12633) showed that phosphatidylglycerol carried the major proportion of saturated fatty acids (89 %), whilst cardiolipin carried an elevated proportion of unsaturated fatty acids (18 %). The increase in phosphatidylglycerol and consequently in saturated fatty acids, together with a decrease in cardiolipin content, enabled greater membrane resistance, reversing the fluidizing effect of TTAB. Therefore, results obtained in the present study point to changes in the fatty acid profile as an adaptive response of A (ATCC 12633) cells to stress caused by a cationic surfactant.

Funding
This study was supported by the:
  • Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  • MCyT Córdoba
  • SECYT–UNRC of Argentina
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081943-0
2014-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2618.html?itemId=/content/journal/micro/10.1099/mic.0.081943-0&mimeType=html&fmt=ahah

References

  1. Aase B., Sundheim G., Langsrud S., Rørvik L. M. ( 2000). Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes . Int J Food Microbiol 62:57–63 [View Article][PubMed]
    [Google Scholar]
  2. Baysse C., O’Gara F. ( 2007). Role of membrane structure during stress signaling and adaptation in Pseudomonas . Pseudomonas193–224 Ramos J. L., Filloux A. New York: Springer; [View Article]
    [Google Scholar]
  3. Bernal P., Muñoz-Rojas J., Hurtado A., Ramos J. L., Segura A. ( 2007a). A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol 9:1135–1145 [View Article][PubMed]
    [Google Scholar]
  4. Bernal P., Segura A., Ramos J. L. ( 2007b). Compensatory role of the cis/trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ Microbiol 9:1658–1664 [View Article][PubMed]
    [Google Scholar]
  5. Bisbiroulas P., Psylou M., Iliopoulou I., Diakogiannis I., Berberi A., Mastronicolis S. K. ( 2011). Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride. Lett Appl Microbiol 52:275–280 [View Article][PubMed]
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. ( 1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  7. Boeris P. S., Domenech C. E., Lucchesi G. I. ( 2007). Modification of phospholipid composition in Pseudomonas putida A ATCC 12633 induced by contact with tetradecyltrimethylammonium. J Appl Microbiol 103:1048–1054 [View Article][PubMed]
    [Google Scholar]
  8. Boeris P. S., Liffourrena A. S., Salvano M. A., Lucchesi G. I. ( 2009). Physiological role of phosphatidylcholine in the Pseudomonas putida A ATCC 12633 response to tetradecyltrimethylammonium bromide and aluminum. Appl Microbiol 49:491–496 [View Article]
    [Google Scholar]
  9. Catucci L., Depalo N., Lattanzio V. M. T., Agostiano A., Corcelli A. ( 2004). Neosynthesis of cardiolipin in Rhodobacter sphaeroides under osmotic stress. Biochemistry 43:15066–15072 [View Article][PubMed]
    [Google Scholar]
  10. Cronan J. E. Jr ( 2002). Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205 [View Article][PubMed]
    [Google Scholar]
  11. Cronan J. E. Jr, Gelmann E. P. ( 1975). Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev 39:232–256[PubMed]
    [Google Scholar]
  12. Dean-Raymond D., Alexander M. ( 1977). Bacterial metabolism of quaternary ammonium compounds. Appl Environ Microbiol 33:1037–1041[PubMed]
    [Google Scholar]
  13. Denich T. J., Beaudette L. A., Lee H., Trevors J. T. ( 2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182 [View Article][PubMed]
    [Google Scholar]
  14. Diefenbach R., Heipieper H. J., Keweloh H. ( 1992). The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol 38:382–387 [CrossRef]
    [Google Scholar]
  15. Fiske C. H., Subbarow Y. ( 1925). The colorimetric determination of phosphorus. J Biol Chem 66:361–375
    [Google Scholar]
  16. Ghosh A. K., Ramakrishnan G., Rajasekharan R. ( 2008). YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem 283:9768–9775 [View Article][PubMed]
    [Google Scholar]
  17. Gilbert P., Moore L. E. ( 2005). Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 99:703–715 [View Article][PubMed]
    [Google Scholar]
  18. Gillan F. T., Johns R. B., Verheyen T. V., Volkman J. K., Bavor H. J. ( 1981). Trans-monounsaturated acids in a marine bacterial isolate. Appl Environ Microbiol 41:849–856[PubMed]
    [Google Scholar]
  19. Guérin-Méchin L., Dubois-Brissonnet F., Heyd B., Leveau J. Y. ( 1999). Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity. J Appl Microbiol 87:735–742 [View Article][PubMed]
    [Google Scholar]
  20. Gutierrez J. A., Nichols P., Couperwhite I. ( 1999). Changes in whole cell-derived fatty acids induced by benzene and occurrence of the unusual 16 : 1 ω6c in Rhodoccocus sp. 33. FEMS Microbiol Lett 176:213–218 [View Article]
    [Google Scholar]
  21. Härtig C., Loffhagen N., Babel W. ( 1999). Glucose stimulates a decrease of the fatty acid saturation degree in Acinetobacter calcoaceticus . Arch Microbiol 171:166–172 [View Article]
    [Google Scholar]
  22. Härtig C., Loffhagen N., Harms H. ( 2005). Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida . Appl Environ Microbiol 71:1915–1922 [View Article][PubMed]
    [Google Scholar]
  23. Heipieper H. J., Weber F. J., Sikkema J., Keweloh H., de Bont J. A. M. ( 1994). Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415 [View Article]
    [Google Scholar]
  24. Heipieper H. J., Meinhardt F., Segura A. ( 2003). The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7 [View Article][PubMed]
    [Google Scholar]
  25. Henderson R., Tocher D. ( 1992). Thin layer chromatography. Lipid Analysis: A Practical Approach65–112 Hamilton R., Hamilton S. Oxford: Oxford University Press;
    [Google Scholar]
  26. Ingram L. O. ( 1976). Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678[PubMed]
    [Google Scholar]
  27. Jones M. V., Herd T. M., Christie H. J. ( 1989). Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides. Microbios 58:49–61[PubMed]
    [Google Scholar]
  28. Kaneda T. ( 1977). Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriol Rev 41:391–418[PubMed]
    [Google Scholar]
  29. Keweloh H., Diefenbach R., Rehm H. J. ( 1991). Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch Microbiol 157:49–53 [View Article][PubMed]
    [Google Scholar]
  30. Kiran M. D., Annapoorni S., Suzuki I., Murata N., Shivaji S. ( 2005). Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125 [View Article][PubMed]
    [Google Scholar]
  31. Konopásek I., Strzalka K., Svobodová J. ( 2000). Cold shock in Bacillus subtilis: different effects of benzyl alcohol and ethanol on the membrane organisation and cell adaptation. Biochim Biophys Acta 1464:18–26 [View Article][PubMed]
    [Google Scholar]
  32. Lakowicz J. R. ( 1999). Principles of Fluorescence Spectroscopy, 2nd edn. New York: Kluwer; [View Article]
    [Google Scholar]
  33. Liffourrena A. S., López F. G., Salvano M. A., Domenech C. E., Lucchesi G. I. ( 2008). Degradation of tetradecyltrimethylammonium by Pseudomonas putida A ATCC 12633 restricted by accumulation of trimethylamine is alleviated by addition of Al 3+ ions. J Appl Microbiol 104:396–402[PubMed]
    [Google Scholar]
  34. Litman B. J., Barenholz Y. ( 1982). Fluorescent probe: diphenylhexatriene. Methods Enzymol 81:678–685 [View Article][PubMed]
    [Google Scholar]
  35. Loffeld B., Keweloh H. ( 1996). cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815 [View Article][PubMed]
    [Google Scholar]
  36. López C. S., Alice A. F., Heras H., Rivas E. A., Sánchez-Rivas C. ( 2006). Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology 152:605–616 [View Article][PubMed]
    [Google Scholar]
  37. Loughlin M. F., Jones M. V., Lambert P. A. ( 2002). Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemother 49:631–639 [View Article][PubMed]
    [Google Scholar]
  38. Lucchesi G. I., Lisa T. A., Domenech C. E. ( 1989). Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium. FEMS Microbiol Lett 57:335–338 [View Article][PubMed]
    [Google Scholar]
  39. Matsumoto K. ( 2001). Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids. Mol Microbiol 39:1427–1433 [View Article][PubMed]
    [Google Scholar]
  40. McDonnell G., Russell A. D. ( 1999). Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179[PubMed]
    [Google Scholar]
  41. Méchin L., Dubois-Brissonnet F., Heyd B., Leveau J. Y. ( 1999). Adaptation of Pseudomonas aeruginosa ATCC 15442 to didecyldimethylammonium bromide induces changes in membrane fatty acid composition and in resistance of cells. J Appl Microbiol 86:859–866 [View Article][PubMed]
    [Google Scholar]
  42. Morrison W. R., Smith L. M. ( 1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5:600–608[PubMed]
    [Google Scholar]
  43. Mrozik A., Piotrowska-Seget Z., Łabuzek S. ( 2004). Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas . Microbiol Res 159:87–95 [View Article][PubMed]
    [Google Scholar]
  44. Mykytczuk N. C. S., Trevors J. T., Leduc L. G., Ferroni G. D. ( 2007). Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog Biophys Mol Biol 95:60–82 [View Article][PubMed]
    [Google Scholar]
  45. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A. P., Fouts D. E., Gill S. R., Pop M. & other authors ( 2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808 [View Article][PubMed]
    [Google Scholar]
  46. Neumann G., Kabelitz N., Heipieper H. J. ( 2003). The regulation of the cis-trans isomerase (cti) of unsaturated fatty acids in Pseudomonas putida: correlation between cti activity and K+-uptake systems. Eur J Lipid Sci Technol 105:585–589 [View Article]
    [Google Scholar]
  47. Nikaido H. ( 1994). Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382–388 [View Article][PubMed]
    [Google Scholar]
  48. Nishihara T., Okamoto T., Nishiyama N. ( 2000). Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge. J Appl Microbiol 88:641–647 [View Article][PubMed]
    [Google Scholar]
  49. Okuyama H., Okajima N., Sasaki S., Higashi S., Murata N. ( 1991). The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim Biophys Acta 1084:13–20 [View Article][PubMed]
    [Google Scholar]
  50. Paulucci N. S., Medeot D. B., Dardanelli M. S., de Lema M. G. ( 2011). Growth temperature and salinity impact fatty acid composition and degree of unsaturation in peanut-nodulating rhizobia. Lipids 46:435–441 [View Article][PubMed]
    [Google Scholar]
  51. Pini C. V., Bernal P., Godoy P., Ramos J. L., Segura A. ( 2009). Cyclopropane fatty acids are involved in organic solvent tolerance but not in acid stress resistance in Pseudomonas putida DOT-T1E. Microb Biotechnol 2:253–261 [View Article][PubMed]
    [Google Scholar]
  52. Pinkart H. C., Wolfram J. W., Rogers R., White D. C. ( 1996). Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132[PubMed]
    [Google Scholar]
  53. Ramos J. L., Duque E., Rodríguez-Herva J. J., Godoy P., Haïdour A., Reyes F., Fernández-Barrero A. ( 1997). Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890 [View Article][PubMed]
    [Google Scholar]
  54. Ramos J. L., Duque E., Gallegos M. T., Godoy P., Ramos-Gonzalez M. I., Rojas A., Teran W., Segura A. ( 2002). Mechanisms of solvent tolerance in Gram-negative bacteria. Annu Rev Microbiol 56:743–768 [View Article][PubMed]
    [Google Scholar]
  55. Russell N. J. ( 1984). Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9:108–112 [View Article]
    [Google Scholar]
  56. Schweizer H. P. ( 2004). Fatty acid biosynthesis and biologically significant acyl transfer reactions in Pseudomonads. Pseudomonas: Biosynthesis of Macromolecules and Molecular Metabolism83–109 Ramos. J. L. New York: Kluwer; [View Article]
    [Google Scholar]
  57. Sikkema J., Weber F. J., Heipieper H. J., de Bont J. A. M. ( 1994). Cellular toxicity of lipophilic compounds: mechanisms, implications, and adaptations. Biocatalysis 10:113–122 [View Article]
    [Google Scholar]
  58. Sikkema J., de Bont J. A. M., Poolman B. ( 1995). Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222[PubMed]
    [Google Scholar]
  59. Takenaka S., Tonoki T., Taira K., Murakami S., Aoki K. ( 2007). Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Appl Environ Microbiol 73:1797–1802 [View Article][PubMed]
    [Google Scholar]
  60. To M. S., Favrin S., Romanova N., Griffiths M. W. ( 2002). Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes . Appl Environ Microbiol 68:5258–5264 [View Article][PubMed]
    [Google Scholar]
  61. Trevors J. T. ( 2003). Fluorescent probes for bacterial cytoplasmic membrane research. J Biochem Biophys Methods 57:87–103 [View Article][PubMed]
    [Google Scholar]
  62. van Ginkel C. G., van Dijk J. B., Kroon A. G. M. ( 1992). Metabolism of hexadecyltrimethylammonium chloride in Pseudomonas strain B1. Appl Environ Microbiol 58:3083–3087[PubMed]
    [Google Scholar]
  63. von Wallbrunn A., Heipieper H. J., Meinhardt F. ( 2002). Cis/trans isomerisation of unsaturated fatty acids in a cardiolipin synthase knock-out mutant of Pseudomonas putida P8. Appl Microbiol Biotechnol 60:179–185 [View Article][PubMed]
    [Google Scholar]
  64. Zhao T., Sun G. ( 2007). Antimicrobial finishing of wool fabric with quaternary aminopyridinium salts. J Appl Polym Sci 103:482–486 [View Article]
    [Google Scholar]
  65. Zhu K., Choi K. H., Schweizer H. P., Rock C. O., Zhang Y. M. ( 2006). Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa . Mol Microbiol 60:260–273 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081943-0
Loading
/content/journal/micro/10.1099/mic.0.081943-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error