1887

Abstract

There are numerous genes in serovar Typhimurium that can confer resistance to fluoroquinolone antibiotics, including those that encode topoisomerase proteins, the primary targets of this class of drugs. However, resistance is often multifactorial in clinical isolates and it is not uncommon to also detect mutations in genes that affect the expression of proteins involved in permeability and multi-drug efflux. The latter mechanism, mediated by tripartite efflux systems, such as that formed by the AcrAB–TolC system, confers inherent resistance to many antibiotics, detergents and biocides. Genetic inactivation of efflux genes gives multi-drug hyper-susceptibility, and in the absence of an intact AcrAB–TolC system some chromosomal and transmissible antibiotic resistance genes no longer confer clinically relevant levels of resistance. Furthermore, a functional multi-drug resistance efflux pump, such as AcrAB–TolC, is required for virulence and the ability to form a biofilm. In part, this is due to altered expression of virulence and biofilm genes being sensitive to efflux status. Efflux pump expression can be increased, usually due to mutations in regulatory genes, and this confers resistance to clinically useful drugs such as fluoroquinolones and β-lactams. Here, I discuss some of the work my team has carried out characterizing the mechanisms of antibiotic resistance in serovar Typhimurium from the late 1980s to 2014.

A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=MCRumMV99Yw.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082412-0
2014-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2366.html?itemId=/content/journal/micro/10.1099/mic.0.082412-0&mimeType=html&fmt=ahah

References

  1. Abouzeed Y. M., Baucheron S., Cloeckaert A. ( 2008). ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 52:2428–2434 [View Article][PubMed]
    [Google Scholar]
  2. Alekshun M. N., Levy S. B. ( 1999). The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol 7:410–413 [View Article][PubMed]
    [Google Scholar]
  3. Bailey A. M., Paulsen I. T., Piddock L. J. ( 2008). RamA confers multidrug resistance in Salmonella enterica via increased expression of acrB, which is inhibited by chlorpromazine. Antimicrob Agents Chemother 52:3604–3611 [View Article][PubMed]
    [Google Scholar]
  4. Bailey A. M., Ivens A., Kingsley R., Cottell J. L., Wain J., Piddock L. J. ( 2010). RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol 192:1607–1616 [View Article][PubMed]
    [Google Scholar]
  5. Barbosa T. M., Levy S. B. ( 2000). Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182:3467–3474 [View Article][PubMed]
    [Google Scholar]
  6. Baucheron S., Tyler S., Boyd D., Mulvey M. R., Chaslus-Dancla E., Cloeckaert A. ( 2004). AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium DT104. Antimicrob Agents Chemother 48:3729–3735 [View Article][PubMed]
    [Google Scholar]
  7. Baucheron S., Coste F., Canepa S., Maurel M. C., Giraud E., Culard F., Castaing B., Roussel A., Cloeckaert A. ( 2012). Binding of the RamR repressor to wild-type and mutated promoters of the ramA gene involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 56:942–948 [View Article][PubMed]
    [Google Scholar]
  8. Baugh S., Ekanayaka A. S., Piddock L. J., Webber M. A. ( 2012). Loss of or inhibition of all multidrug resistance efflux pumps of Salmonella enterica serovar Typhimurium results in impaired ability to form a biofilm. J Antimicrob Chemother 67:2409–2417 [View Article][PubMed]
    [Google Scholar]
  9. Baugh S., Phillips C. R., Ekanayaka A. S., Piddock L. J., Webber M. A. ( 2014). Inhibition of multidrug efflux as a strategy to prevent biofilm formation. J Antimicrob Chemother 69:673–681 [View Article][PubMed]
    [Google Scholar]
  10. Blair J. M., Piddock L. J. ( 2009). Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol 12:512–519 [View Article][PubMed]
    [Google Scholar]
  11. Blair J. M., La Ragione R. M., Woodward M. J., Piddock L. J. ( 2009). Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 64:965–972 [View Article][PubMed]
    [Google Scholar]
  12. Browning D. F., Busby S. J. ( 2004). The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65 [View Article][PubMed]
    [Google Scholar]
  13. Buckley A. M., Webber M. A., Cooles S., Randall L. P., La Ragione R. M., Woodward M. J., Piddock L. J. ( 2006). The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell Microbiol 8:847–856 [View Article][PubMed]
    [Google Scholar]
  14. Chollet R., Chevalier J., Bollet C., Pages J. M., Davin-Regli A. ( 2004). RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother 48:2518–2523 [View Article][PubMed]
    [Google Scholar]
  15. Cloeckaert A., Chaslus-Dancla E. ( 2001). Mechanisms of quinolone resistance in Salmonella. Vet Res 32:291–300 [View Article][PubMed]
    [Google Scholar]
  16. de Cristóbal R. E., Vincent P. A., Salomón R. A. ( 2006). Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli. J Antimicrob Chemother 58:31–36 [View Article][PubMed]
    [Google Scholar]
  17. Garvey M. I., Rahman M. M., Gibbons S., Piddock L. J. ( 2011). Medicinal plant extracts with efflux inhibitory activity against Gram-negative bacteria. Int J Antimicrob Agents 37:145–151 [View Article][PubMed]
    [Google Scholar]
  18. Gensberg K., Jin Y. F., Piddock L. J. ( 1995). A novel gyrB mutation in a fluoroquinolone-resistant clinical isolate of Salmonella typhimurium. FEMS Microbiol Lett 132:57–60 [View Article][PubMed]
    [Google Scholar]
  19. Griggs D. J., Gensberg K., Piddock L. J. ( 1996). Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother 40:1009–1013[PubMed]
    [Google Scholar]
  20. Harder K. J., Nikaido H., Matsuhashi M. ( 1981). Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob Agents Chemother 20:549–552 [View Article][PubMed]
    [Google Scholar]
  21. Heisig P. ( 1993). High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrA and gyrB genes. J Antimicrob Chemother 32:367–377 [View Article][PubMed]
    [Google Scholar]
  22. Köhler T., Michea-Hamzehpour M., Plesiat P., Kahr A. L., Pechere J. C. ( 1997). Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob Agents Chemother 41:2540–2543[PubMed]
    [Google Scholar]
  23. Lacroix F. J., Cloeckaert A., Grépinet O., Pinault C., Popoff M. Y., Waxin H., Pardon P. ( 1996). Salmonella typhimurium acrB-like gene: identification and role in resistance to biliary salts and detergents and in murine infection. FEMS Microbiol Lett 135:161–167 [View Article][PubMed]
    [Google Scholar]
  24. Lawler A. J., Ricci V., Busby S. J. W., Piddock L. J. V. ( 2013). Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557 [View Article][PubMed]
    [Google Scholar]
  25. Li X. Z., Livermore D. M., Nikaido H. ( 1994). Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38:1732–1741 [View Article][PubMed]
    [Google Scholar]
  26. Li X. Z., Nikaido H., Poole K. ( 1995). Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother 39:1948–1953 [View Article][PubMed]
    [Google Scholar]
  27. Lomovskaya O., Warren M. S., Lee A., Galazzo J., Fronko R., Lee M., Blais J., Cho D., Chamberland S. & other authors ( 2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother 45:105–116 [View Article][PubMed]
    [Google Scholar]
  28. Mortimer P. G. S., Piddock L. J. V. ( 1991). A comparison of methods used for measuring the accumulation of quinolones by Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother 28:639–653 [View Article][PubMed]
    [Google Scholar]
  29. Mortimer P. G. S,, Piddock L. J. V. ( 1993). The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J Antimicrob Chemother 32:195–213 [View Article][PubMed]
    [Google Scholar]
  30. Nishino K., Latifi T., Groisman E. A. ( 2006). Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141 [View Article][PubMed]
    [Google Scholar]
  31. Oethinger M., Kern W. V., Jellen-Ritter A. S., McMurry L. M., Levy S. B. ( 2000). Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44:10–13 [View Article][PubMed]
    [Google Scholar]
  32. Payne D. J., Gwynn M. N., Holmes D. J., Pompliano D. L. ( 2007). Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40 [View Article][PubMed]
    [Google Scholar]
  33. Piddock L. J. ( 2006a). Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402 [View Article][PubMed]
    [Google Scholar]
  34. Piddock L. J. ( 2006b). Multidrug-resistance efflux pumps – not just for resistance. Nat Rev Microbiol 4:629–636 [View Article][PubMed]
    [Google Scholar]
  35. Piddock L. J. V., Whale K., Wise R. ( 1990). Quinolone resistance in Salmonella: clinical experience. Lancet 335:1459 [View Article][PubMed]
    [Google Scholar]
  36. Piddock L. J., Griggs D. J., Hall M. C., Jin Y. F. ( 1993). Ciprofloxacin resistance in clinical isolates of Salmonella typhimurium obtained from two patients. Antimicrob Agents Chemother 37:662–666 [View Article][PubMed]
    [Google Scholar]
  37. Piddock L. J., White D. G., Gensberg K., Pumbwe L., Griggs D. J. ( 2000). Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 44:3118–3121 [View Article][PubMed]
    [Google Scholar]
  38. Ricci V., Piddock L. J. ( 2009a). Only for substrate antibiotics are a functional AcrAB-TolC efflux pump and RamA required to select multidrug-resistant Salmonella Typhimurium. J Antimicrob Chemother 64:654–657 [View Article][PubMed]
    [Google Scholar]
  39. Ricci V., Piddock L. J. ( 2009b). Ciprofloxacin selects for multidrug resistance in Salmonella enterica serovar Typhimurium mediated by at least two different pathways. J Antimicrob Chemother 63:909–916 [View Article][PubMed]
    [Google Scholar]
  40. Ricci V., Piddock L. J. ( 2010). Exploiting the role of TolC in pathogenicity: identification of a bacteriophage for eradication of Salmonella serovars from poultry. Appl Environ Microbiol 76:1704–1706 [View Article][PubMed]
    [Google Scholar]
  41. Ricci V., Busby S. J., Piddock L. J. ( 2012). Regulation of RamA by RamR in Salmonella enterica serovar Typhimurium: isolation of a RamR superrepressor. Antimicrob Agents Chemother 56:6037–6040 [View Article][PubMed]
    [Google Scholar]
  42. Ricci V., Blair J. M., Piddock L. J. ( 2014). RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease. J Antimicrob Chemother 69:643–650 [View Article][PubMed]
    [Google Scholar]
  43. Robillard N. J. ( 1990). Broad-host-range gyrase A gene probe. Antimicrob Agents Chemother 34:1889–1894 [View Article][PubMed]
    [Google Scholar]
  44. Schneiders T., Amyes S. G. B., Levy S. B. ( 2003). Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 47:2831–2837 [View Article][PubMed]
    [Google Scholar]
  45. van der Straaten T., Janssen R., Mevius D. J., van Dissel J. T. ( 2004). Salmonella gene rma (ramA) and multiple-drug-resistant Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother 48:2292–2294 [View Article][PubMed]
    [Google Scholar]
  46. Webber M. A., Randall L. P., Cooles S., Woodward M. J., Piddock L. J. ( 2008). Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 62:83–91 [View Article][PubMed]
    [Google Scholar]
  47. Webber M. A., Bailey A. M., Blair J. M. A., Morgan E., Stevens M. P., Hinton J. C. D., Ivens A., Wain J., Piddock L. J. V. ( 2009). The global consequence of disruption of the AcrAB-TolC efflux pump in Salmonella enterica includes reduced expression of SPI-1 and other attributes required to infect the host. J Bacteriol 191:4276–4285 [View Article][PubMed]
    [Google Scholar]
  48. White D. G., Maneewannakul K., von Hofe E., Zillman M., Eisenberg W., Field A. K., Levy S. B. ( 1997). Inhibition of the multiple antibiotic resistance (mar) operon in Escherichia coli by antisense DNA analogs. Antimicrob Agents Chemother 41:2699–2704[PubMed]
    [Google Scholar]
  49. Wray C., McLaren I., Wise R., Piddock L. J. V. ( 1990). Nalidixic acid-resistant salmonellae. Vet Rec 126:489[PubMed]
    [Google Scholar]
  50. Yang S., Lopez C. R., Zechiedrich E. L. ( 2006). Quorum sensing and multidrug transporters in Escherichia coli. Proc Natl Acad Sci U S A 103:2386–2391 [View Article][PubMed]
    [Google Scholar]
  51. Zheng D., Constantinidou C., Hobman J. L., Minchin S. D. ( 2004). Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32:5874–5893 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082412-0
Loading
/content/journal/micro/10.1099/mic.0.082412-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error