1887

Abstract

The activity of glycogen-accumulating organisms (GAOs) in enhanced biological phosphorus removal (EBPR) wastewater treatment plants has been proposed as one cause of deterioration of EBPR. Putative GAOs from the , spp. (including ), were studied in full-scale EBPR plants to determine their distribution, abundance and ecophysiology. Fluorescence hybridization (FISH) demonstrated that spp. were generally low in abundance; however, in one plant surveyed, Cluster 2 constituted 9 % of all . FISH combined with microautoradiography revealed that both Cluster 1 and Cluster 2 were capable of taking up a narrow range of substrates including acetate, propionate, pyruvate and glucose under anaerobic and aerobic conditions. Formate, butyrate, ethanol and several other substrates were not taken up. Cluster 2 demonstrated a phenotype consistent with the current metabolic model for GAOs – anaerobic assimilation of acetate and reduction to polyhydroxyalkanoates (PHA) using the glycolytic pathway, and aerobic consumption of PHA. Polyphosphate-accumulating organisms (PAOs, ‘ Accumulibacter phosphatis’) and other putative GAOs (‘ Competibacter phosphatis’) co-existed in two plants with Cluster 2 , but in both plants, the latter organisms were more abundant. Thus Cluster 2 can be relatively abundant and could be carbon competitors of PAOs and other GAOs in EBPR plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001032-0
2007-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/1/178.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001032-0&mimeType=html&fmt=ahah

References

  1. Amann R. I. 1995; In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual pp 1–15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. London: Kluwer;
    [Google Scholar]
  2. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S ribosomal RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  3. Beer M., Kong Y. H., Seviour R. J. 2004; Are some putative glycogen accumulating organisms (GAO) in anaerobic : aerobic activated sludge systems members of the α-Proteobacteria ?. Microbiology 150:2267–2275 [CrossRef]
    [Google Scholar]
  4. Bickis I. J., Quastel J. H. 1965; Effects of metabolic inhibitors on energy metabolism of Ehrlich ascites carcinoma cells. Nature 205:44–46 [CrossRef]
    [Google Scholar]
  5. Blackall L. L., Crocetti G. R., Saunders A. M., Bond P. L. 2002; A review and update of the microbiology of enhanced biological phosphorus removal in wastewater treatment plants. Antonie Van Leeuwenhoek 81:681–691 [CrossRef]
    [Google Scholar]
  6. Bond P. L., Erhart R., Wagner M., Keller J., Blackall L. L. 1999; Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol 65:4077–4084
    [Google Scholar]
  7. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L. 2000; Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182 [CrossRef]
    [Google Scholar]
  8. Crocetti G. R., Banfield J. F., Keller J., Bond P. L., Blackall L. L. 2002; Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148:3353–3364
    [Google Scholar]
  9. Daims H., Bruhl A., Amann R., Schleifer K. H., Wagner M. 1999; The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444 [CrossRef]
    [Google Scholar]
  10. Filipe C. D. M., Daigger G. T., Grady C. P. L. 2001; A metabolic model for acetate uptake under anaerobic conditions by glycogen accumulating organisms: stoichiometry, kinetics, and the effect of pH. Biotechnol Bioeng 76:17–31 [CrossRef]
    [Google Scholar]
  11. Kong Y. H., Ong S. L., Ng W. J., Liu W. T. 2002; Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes. Environ Microbiol 4:753–757 [CrossRef]
    [Google Scholar]
  12. Kong Y. H., Nielsen J. L., Nielsen P. H. 2004; Microautoradiographic study of Rhodocyclus-related polyphosphate accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70:5383–5390 [CrossRef]
    [Google Scholar]
  13. Kong Y. H., Nielsen J. L., Nielsen P. H. 2005; Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 71:4076–4085 [CrossRef]
    [Google Scholar]
  14. Kong Y. H., Xia Y., Nielsen J. L., Nielsen P. H. 2006; Ecophysiology of a group of uncultured gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environ Microbiol 8:479–489 [CrossRef]
    [Google Scholar]
  15. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K. H., Wagner M. 1999; Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297
    [Google Scholar]
  16. Lindrea K. C., Seviour E. M., Seviour R. J., Blackall L. L., Soddell J. A. 1999; Practical methods for the examination and characterization of activated sludge. In The Microbiology of Activated Sludge pp 257–300 Edited by Seviour R. J., Blackall L. L. Dordrecht: Kluwer;
    [Google Scholar]
  17. Liu W. T., Mino T., Nakamura K., Matsuo T. 1996; Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Water Res 30:75–82 [CrossRef]
    [Google Scholar]
  18. Lotspeich W. D., Peters R. A., Wilson T. H. 1952; The inhibition of aconitase by inhibitor fractions isolated from tissues poisoned with fluoroacetate. Biochem J 51:20–25
    [Google Scholar]
  19. Maszenan A. M., Seviour R. J., Patel B. K. C., Janssen P. H., Wanner J. 2005; Defluvicoccus vanus gen. nov., sp. nov. a novel Gram-negative coccus/coccobacillus in the ‘ Alphaproteobacteria ’ from activated sludge. Int J Syst Evol Microbiol 55:2105–2111 [CrossRef]
    [Google Scholar]
  20. Meyer R. L., Saunders A. M., Blackall L. L. 2006; Putative glycogen-accumulating organisms belonging to the Alphaproteobacteria identified through rRNA-based stable isotope probing. Microbiology 152:419–429 [CrossRef]
    [Google Scholar]
  21. Mino T., Liu W. T., Kurisu F., Matsuo T. 1995; Modeling glycogen-storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes. Water Sci Technol 31:25–34
    [Google Scholar]
  22. Mino T., Van Loosdrecht M. C. M., Heijnen J. J. 1998; Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207 [CrossRef]
    [Google Scholar]
  23. Nielsen J. L., Christensen D., Kloppenberg M., Nielsen P. H. 2003; Quantification of cell-specific substrate uptake by probe-defined bacteria under in situ conditions by microautoradiography and fluorescence in situ hybridization. Environ Microbiol 5:202–211 [CrossRef]
    [Google Scholar]
  24. Oehmen A., Yuan Z. G., Blackall L. L., Keller J. 2005; Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol Bioeng 91:162–168 [CrossRef]
    [Google Scholar]
  25. Ostle A., Holt J. G. 1982; Nile blue-A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241
    [Google Scholar]
  26. Satoh H., Mino T., Matsuo T. 1992; Uptake of organic substrates and accumulation of polyhydroxyalkanoates linked with glycolysis of intracellular carbohydrates under anaerobic conditions in the biological excess phosphate removal processes. Water Sci Technol 26:933–942
    [Google Scholar]
  27. Saunders A. M., Oehmen A., Blackall L. L., Yuan Z., Keller J. 2003; The effect of GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biological phosphorus removal) plants. Water Sci Technol 47:37–43
    [Google Scholar]
  28. Seviour R. J., Maszenan A. M., Soddell J. A., Tandoi V., Patel B. K. C., Kong Y. H., Schumann P. 2000; Microbiology of the ‘G-bacteria’ in activated sludge. Environ Microbiol 2:581–593 [CrossRef]
    [Google Scholar]
  29. Seviour R. J., Mino T., Onuki M. 2003; The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127 [CrossRef]
    [Google Scholar]
  30. van Loosdrecht M. C. M. Smolders G. J., Kuba T., Heijnen J. J. 1997; Metabolism of micro-organisms responsible for enhanced biological phosphorus removal from wastewater – use of dynamic enrichment cultures. Antonie Van Leeuwenhoek 71:109–116 [CrossRef]
    [Google Scholar]
  31. Wallner G., Amann R., Biesker W. 1993; Optimizing fluorescent in situ hybridisation with rRNA-targeted oligonucleotide probes for low cytometric identification of microorganisms. Cytometry 14:136–143 [CrossRef]
    [Google Scholar]
  32. Wong M.-T., Tan F. M., Ng W. J., Liu W. T. 2004; Identification and occurence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes. Microbiology 150:3741–3748 [CrossRef]
    [Google Scholar]
  33. Wong M. T., Mino T., Seviour R. J., Onuki M., Liu W. T. 2005; In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res 39:2901–2914 [CrossRef]
    [Google Scholar]
  34. Zeng R. J., Saunders A. M., Yuan Z. G., Blackall L. L., Keller J. 2003a; Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. Biotechnol Bioeng 83:140–148 [CrossRef]
    [Google Scholar]
  35. Zeng R. J., Yuan Z. G., Keller J, van Loosdrecht M. C. M. 2003b; Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems. Biotechnol Bioeng 81:92–105 [CrossRef]
    [Google Scholar]
  36. Zeng R. J., Yuan Z. G., Keller J. 2003c; Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system. Biotechnol Bioeng 81:397–404 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001032-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001032-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error