1887

Abstract

Bacterial conjugation is a DNA transfer event that requires three plasmid-encoded multi-protein complexes: the membrane-spanning mating pair formation (Mpf) complex, the cytoplasmic nucleoprotein relaxosome complex, and a homo-multimeric coupling protein that links the Mpf and relaxosome at the cytoplasmic membrane. Bacterial two-hybrid (BTH) technology and immunoprecipitation were used to demonstrate an interaction between the IncH plasmid-encoded transfer protein TraJ and the coupling protein TraG. TraJ is essential for conjugative transfer but is not required for the formation of the conjugative pilus, and is therefore not regarded as an Mpf component. Fractionation studies indicated that TraJ shared a similar cellular domain to that of TraG at the cellular membrane. Protein analyses have previously identified TraJ homologues encoded in a multitude of plasmid and chromosomal genomes that were also found to encode an adjacent TraG homologue, thus indicating co-inheritance. BTH analysis of these TraJ and cognate TraG homologues demonstrated conservation of the TraJ–TraG interaction. Additional occurrences of the module were also detected in genomic sequence data throughout the Proteobacteria, and phylogenetic comparison of these IncH-like TraG proteins with the coupling proteins encoded by other conjugative transfer systems (including IncP, IncW and IncF) that lack TraJ homologues indicated that the H-like coupling proteins were distinct. Accordingly, the IncP, IncW and IncF coupling proteins were unable to interact with TraJ, but were able to interact with IncH plasmid-encoded TrhB, an Mpf component known to complex with its cognate coupling protein TraG. The divergence of the IncH-type coupling proteins may partly be due to the requirement of TraJ interaction, and notably, TraG and TraJ cumulatively represent the domain architecture of the known translocase family FtsK/SpoIIIE. It is proposed that TraJ is a functional part of the IncH-type coupling protein complex required for translocation of DNA through the cytoplasmic membrane.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001297-0
2007-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/428.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001297-0&mimeType=html&fmt=ahah

References

  1. Anthony K. G., Kathir P., Moore D., Ippen-Ihler K., Frost L. S. 1996; Analysis of the traLEKBP sequence and the TraP protein from three F-like plasmids: F, R100-1 and ColB2. J Bacteriol 178:3194–3200
    [Google Scholar]
  2. Balzer D., Pansegrau W., Lanka E. 1994; Essential motifs of relaxase (TraI) and TraG proteins involved in conjugative transfer of plasmid RP4. J Bacteriol 176:4285–4295
    [Google Scholar]
  3. Bath J., Wu L. J., Errington J., Wang J. C. 2000; Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290:995–997 [CrossRef]
    [Google Scholar]
  4. Bradley D. E., Taylor D. E., Cohen D. R. 1980; Specification of surface mating systems among conjugative drug resistance plasmids in Escherichia coli K-12. J Bacteriol 143:1466–1470
    [Google Scholar]
  5. Cabezon E., Lanka E., de la Cruz F. 1994; Requirements for mobilization of plasmids RSF1010 and ColE1 by the IncW plasmid R388: trwB and RP4 traG are interchangeable. J Bacteriol 176:4455–4458
    [Google Scholar]
  6. Cascales E., Christie P. J. 2003; The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149 [CrossRef]
    [Google Scholar]
  7. Cascales E., Christie P. J. 2004; Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173 [CrossRef]
    [Google Scholar]
  8. Couturier M. R., Tasca E., Montecucco C., Stein M. 2006; Interaction with CagF is required for translocation of CagA into the host via the Helicobacter pylori type IV secretion system. Infect Immun 74:273–281 [CrossRef]
    [Google Scholar]
  9. Datta N., Olarte J. 1974; R factors in strains of Salmonella typhi and Shigella dysenteriae 1 isolated during epidemics in Mexico: classification by compatibility. Antimicrob Agents Chemother 5:310–317 [CrossRef]
    [Google Scholar]
  10. Disque-Kochem C., Dreiseikelmann B. 1997; The cytoplasmic DNA-binding protein TraM binds to the inner membrane protein TraD in vitro. J Bacteriol 179:6133–6137
    [Google Scholar]
  11. Errington J., Bath J., Wu L. J. 2001; DNA transport in bacteria. Nat Rev Mol Cell Biol 2:538–545 [CrossRef]
    [Google Scholar]
  12. Furste J. P., Pansegrau W., Ziegelin G., Kroger M., Lanka E. 1989; Conjugative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin. Proc Natl Acad Sci U S A 86:1771–1775 [CrossRef]
    [Google Scholar]
  13. Gilmour M. W., Gunton J. E., Lawley T. D., Taylor D. E. 2003; Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol Microbiol 49:105–116 [CrossRef]
    [Google Scholar]
  14. Gilmour M. W., Thomson N. R., Sanders M., Parkhill J., Taylor D. E. 2004; The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52:182–202 [CrossRef]
    [Google Scholar]
  15. Gomis-Ruth F. X., Moncalian G., Perez-Luque R., Gonzalez A., Cabezon E., Coll M., de la Cruz F. 2001; The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409:637–641 [CrossRef]
    [Google Scholar]
  16. Gunton J. E., Gilmour M. W., Alonso G., Taylor D. E. 2005; Subcellular localization and functional domains of the coupling protein, TraG, from IncHI1 plasmid R27. Microbiology 151:3549–3561 [CrossRef]
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  18. Hamilton C. M., Lee H., Li P. L., Cook D. M., Piper K. R., Lanka E., Ream W., Farrand S. K., von Bodman S. B. 2000; TraG from RP4 and TraG and VirD4 from Ti plasmids confer relaxosome specificity to the conjugal transfer system of pTiC58. J Bacteriol 182:1541–1548 [CrossRef]
    [Google Scholar]
  19. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [CrossRef]
    [Google Scholar]
  20. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  21. Lawley T. D., Gilmour M. W., Gunton J. E., Standeven L. J., Taylor D. E. 2002; Functional and mutational analysis of conjugative transfer region 1 (Tra1) from the IncHI1 plasmid R27. J Bacteriol 184:2173–2180 [CrossRef]
    [Google Scholar]
  22. Lawley T. D., Klimke W. A., Gubbins M. J., Frost L. S. 2003a; F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15 [CrossRef]
    [Google Scholar]
  23. Lawley T. D., Gilmour M. W., Gunton J. E., Tracz D. M., Taylor D. E. 2003b; Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27. J Bacteriol 185:581–591 [CrossRef]
    [Google Scholar]
  24. Lawn A. M., Meynell E., Meynell G. G., Datta N. 1967; Sex pili and the classification of sex factors in the Enterobacteriaceae. Nature 216:343–346 [CrossRef]
    [Google Scholar]
  25. Lee S. J., Gray M. C., Guo L., Sebo P., Hewlett E. L. 1999; Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect Immun 67:2090–2095
    [Google Scholar]
  26. Liberek K., Georgopoulos C., Zylicz M. 1988; Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci U S A 85:6632–6636 [CrossRef]
    [Google Scholar]
  27. Llosa M., Zunzunegui S., de la Cruz F. 2003; Conjugative coupling proteins interact with cognate and heterologous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc Natl Acad Sci U S A 100:10465–10470 [CrossRef]
    [Google Scholar]
  28. Maher D., Sherburne R., Taylor D. E. 1991; Bacteriophages for incompatibility group H plasmids: morphological and growth characteristics. Plasmid 26:141–146 [CrossRef]
    [Google Scholar]
  29. Maneewannakul K., Kathir P., Endley S., Moore D., Manchak J., Frost L., Ippen-Ihler K. 1996; Construction of derivatives of the F plasmid pOX-tra715: characterization of traY and traD mutants that can be complemented in trans. Mol Microbiol 22:197–205 [CrossRef]
    [Google Scholar]
  30. Mazel D., Davies J. 1999; Antibiotic resistance in microbes. Cell Mol Life Sci 56:742–754 [CrossRef]
    [Google Scholar]
  31. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Raivio T. L. 2005; Envelope stress responses and Gram-negative bacterial pathogenesis. Mol Microbiol 56:1119–1128 [CrossRef]
    [Google Scholar]
  33. Raivio T. L., Popkin D. L., Silhavy T. J. 1999; The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 181:5263–5272
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schroder G., Krause S., Zechner E. L., Traxler B., Yeo H. J., Lurz R., Waksman G., Lanka E. 2002; TraG-like proteins of DNA transfer systems and of the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates?. J Bacteriol 184:2767–2779 [CrossRef]
    [Google Scholar]
  36. Sharp M. D., Pogliano K. 2003; The membrane domain of SpoIIIE is required for membrane fusion during Bacillus subtilis sporulation. J Bacteriol 185:2005–2008 [CrossRef]
    [Google Scholar]
  37. Sherburne C. K., Lawley T. D., Gilmour M. W., Blattner F. R., Burland V., Grotbeck E., Rose D. J., Taylor D. E. 2000; The complete DNA sequence and analysis of R27, a large IncHI plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res 28:2177–2186 [CrossRef]
    [Google Scholar]
  38. Smith H. R., Grindley N. D. F., Humphreys G. O., Anderson E. S. 1973; Interactions of group H resistance factors with the F factor. J Bacteriol 115:623–628
    [Google Scholar]
  39. Strack B., Lessl M., Calendar R., Lanka E. 1992; A common sequence motif, -E-G-Y-A-T-A-, identified within the primase domains of plasmid-encoded I- and P-type DNA primases and the alpha protein of the Escherichia coli satellite phage P4. J Biol Chem 267:13062–13072
    [Google Scholar]
  40. Taylor D. E. 1983; Transfer-defective and tetracycline-sensitive mutants of the incompatibility group HI plasmid R27 generated by insertion of transposon 7. Plasmid 9:227–239 [CrossRef]
    [Google Scholar]
  41. Taylor D. E., Levine J. G. 1980; Studies of temperature-sensitive transfer and maintenance of H incompatibility group plasmids. J Gen Microbiol 116:475–484
    [Google Scholar]
  42. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  43. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  44. Wang L., Lutkenhaus J. 1998; FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol Microbiol 29:731–740 [CrossRef]
    [Google Scholar]
  45. Weiss D. S. 2004; Bacterial cell division and the septal ring. Mol Microbiol 54:588–597 [CrossRef]
    [Google Scholar]
  46. Wu L. J., Errington J. 1994; Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264:572–575 [CrossRef]
    [Google Scholar]
  47. Wu L. J., Lewis P. J., Allmansberger R., Hauser P. M., Errington J. 1995; A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev 9:1316–1326 [CrossRef]
    [Google Scholar]
  48. Yu B., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. 2000; An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci U S A 97:5978–5983 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001297-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001297-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error