1887

Abstract

differentiates from rod-shaped, free-living cells into pleomorphic, non-dividing, N-fixing bacteroids within alfalfa root nodules. Here, the role of the genes in bacteroid differentiation and in free-living cell division is examined. Disruption of the gene resulted in large, swollen and branched free-living cells, and in symbiosis a mutation resulted in a defect in nitrogen fixation with activity reduced by approximately 70 % compared to the wild-type. It has been demonstrated that the genes form an operon driven by a promoter located 173 bp upstream of . The genes were expressed in free-living cells and in both the infection zone and the symbiotic zone of alfalfa nodules; however, no changes in the free-living cell morphology, growth or symbiotic N fixation were detected as a result of deletion of these genes. Induced production of individual or combinations of Min proteins in altered its rod-shaped cell morphology. Moreover, cell morphologies resulting from the overexpression of the Min proteins in suggested similar functions for the and genes. These data suggest that there is greater redundancy in the roles of cell division genes in compared with .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/001362-0
2007-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/375.html?itemId=/content/journal/micro/10.1099/mic.0.2006/001362-0&mimeType=html&fmt=ahah

References

  1. Åkerlund T., Gullbrand B., Nordström K. 2002; Effects of the Min system on nucleoid segregation in Escherichia coli . Microbiology 148:3213–3222
    [Google Scholar]
  2. Barnett M. J., Hung D. Y., Reisenauer A., Shapiro L., Long S. R. 2001; A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti . J Bacteriol 183:3204–3210 [CrossRef]
    [Google Scholar]
  3. Barnett M. J., Toman C. J., Fisher R. F., Long S. R. 2004; A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci U S A 101:16636–16641 [CrossRef]
    [Google Scholar]
  4. Bellefontaine A. F., Pierreux C. E., Mertens P., Vandenhaute J., Letesson J. J., Bolle X. D. 2002; Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus . Mol Microbiol 43:945–960 [CrossRef]
    [Google Scholar]
  5. Bernhardt T. G., de Boer P. A. J. 2005; SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli . Mol Cell 18:555–564 [CrossRef]
    [Google Scholar]
  6. Bernstein J. A., Khodursky A. B., Lin P. H., Lin-Chao S., Cohen S. N. 2002; Global analysis of mRNA decay and abundance in Escherichia coli at single gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99:9697–9702 [CrossRef]
    [Google Scholar]
  7. Bi E., Lutkenhaus J. 1991; FtsZ ring structure associated with division in Escherichia coli . Nature 354:161–164 [CrossRef]
    [Google Scholar]
  8. Cha J. H., Stewart G. C. 1997; The divIVA minicell locus of Bacillus subtilis . J Bacteriol 179:1671–1683
    [Google Scholar]
  9. Cowie A., Cheng J., Sibley C. D., Fong Y., Zaheer R., Patten C. L., Morton R. M., Golding G. B., Finan T. M. 2006; An integrated approach to functional genomics: construction of a novel reporter gene fusion library for Sinorhizobium meliloti . Appl Environ Microbiol 72:7156–7167 [CrossRef]
    [Google Scholar]
  10. de Boer P. A., Crossley R. E., Rothfield L. I. 1989; A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli . Cell 56:641–649 [CrossRef]
    [Google Scholar]
  11. Edwards D. H., Errington J. 1997; The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915 [CrossRef]
    [Google Scholar]
  12. Errington J., Daniel R. A., Scheffers D. J. 2003; Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65 [CrossRef]
    [Google Scholar]
  13. Figge R. M., Easter J., Gober J. W. 2003; Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus . Mol Microbiol 47:1225–1237 [CrossRef]
    [Google Scholar]
  14. Finan T. M., Hartwieg E., Lemieux K., Bergman K., Walker G. C., Signer E. R. 1984; General transduction in Rhizobium meliloti . J Bacteriol 159:120–124
    [Google Scholar]
  15. Finan T. M., Kunkel B., Devos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  16. Finan T. M., Weidner S., Wong K., Buhrmester J., Chain P., Vorholter F. J., Hernandez-Lucas I., Becker A., Cowie A. other authors 2001; The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti . Proc Natl Acad Sci U S A 98:9889–9894 [CrossRef]
    [Google Scholar]
  17. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A., Boistard P. 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672 [CrossRef]
    [Google Scholar]
  18. Gonzalez V., Santamaria R. I., Bustos P., Hernandez-Gonzalez I., Medrano-Soto A., Moreno-Hagelsieb G., Janga S. C., Ramirez M. A., Jimenez-Jacinto V. other authors 2006; The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839 [CrossRef]
    [Google Scholar]
  19. Hale C. A., Meinhardt H., de Boer P. A. 2001; Dynamic localization cycle of the cell division regulator MinE in Escherichia coli . EMBO J 20:1563–1572 [CrossRef]
    [Google Scholar]
  20. Hallez R., Bellefontaine A. F., Letesson J. J., De Bolle X. 2004; Morphological and functional asymmetry in alpha-proteobacteria. Trends Microbiol 12:361–365 [CrossRef]
    [Google Scholar]
  21. Labes M., Rastogi V., Watson R., Finan T. M. 1993; Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti : the role of an unusual ntrC allele. J Bacteriol 175:2662–2673
    [Google Scholar]
  22. Latch J. N., Margolin W. 1997; Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti . J Bacteriol 179:2373–2381
    [Google Scholar]
  23. Laub M. T., McAdams H. H., Feldblyum T., Fraser C. M., Shapiro L. 2000; Global analysis of the genetic network controlling a bacterial cell cycle. Science 290:2144–2148 [CrossRef]
    [Google Scholar]
  24. MacLellan S. R., MacLean A. M., Finan T. M. 2006; Promoter prediction in the rhizobia. Microbiology 152:1751–1763 [CrossRef]
    [Google Scholar]
  25. Margolin W. 2003; Bacterial shape: growing off this mortal coil. Curr Biol 13:R705–R707 [CrossRef]
    [Google Scholar]
  26. Marston A. L., Errington J. 1999; Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33:84–96 [CrossRef]
    [Google Scholar]
  27. Mazouni K., Domain F., Cassier-Chauvat C., Chauvat F. 2004; Molecular analysis of the key cytokinetic components of cyanobacteria: FtsZ. ZipN and MinCDE. Mol Microbiol 52:1145–1158 [CrossRef]
    [Google Scholar]
  28. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausset A. E., Barloy-Hubler F., Galibert F. other authors 2006; Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium -legume symbiosis. Proc Natl Acad Sci U S A 103:5230–5235 [CrossRef]
    [Google Scholar]
  29. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Mohl D. A., Gober J. W., Easter J. Jr 2001; The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus . Mol Microbiol 42:741–755
    [Google Scholar]
  31. Oke V., Long S. R. 1999; Bacteroid formation in the Rhizobium –legume symbiosis. Curr Opin Microbiol 2:641–646 [CrossRef]
    [Google Scholar]
  32. Østerås M., Stanley J., Finan T. M. 1995; Identification of Rhizobium -specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol 177:5485–5494
    [Google Scholar]
  33. Paau A. S., Lee D., Cowles J. R. 1977; Comparison of nucleic acid content in populations of free-living and symbiotic Rhizobium meliloti by flow microfluorometry. J Bacteriol 129:1156–1158
    [Google Scholar]
  34. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313 [CrossRef]
    [Google Scholar]
  35. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene 127:15–21 [CrossRef]
    [Google Scholar]
  36. Ramirez-Arcos S., Szeto J., Beveridge T. J., Victor C., Francis F., Dillon J.-A. R. 2001; Deletion of the cell-division inhibitor MinC results in lysis of Neisseria gonorrhoeae . Microbiology 147:225–237
    [Google Scholar]
  37. Reeve W. G., Tiwari R. P., Worsley P. S., Dilworth M. J., Glenn A. R., Howieson J. G. 1999; Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 145:1307–1316 [CrossRef]
    [Google Scholar]
  38. Sambrook J., Russell R. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schweizer H. P., Klassen T. R., Hoang T. 1996; Improved methods for gene analysis and expression in Pseudomonas . In Biology of Pseudomonas pp 229–237 Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Shih Y. L., Le T., Rothfield L. 2003; Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A 100:7865–7870 [CrossRef]
    [Google Scholar]
  41. Sibley C. D., Maclellan S. R., Finan T. 2006; The Sinorhizobium meliloti chromosomal origin of replication. Microbiology 152:443–455 [CrossRef]
    [Google Scholar]
  42. Soupene E., Foussard M., Boistard P., Truchet G., Batut J. 1995; Oxygen as a key developmental regulator of Rhizobium meliloti N2-fixation gene expression within the alfalfa root nodule. Proc Natl Acad Sci U S A 92:3759–3763 [CrossRef]
    [Google Scholar]
  43. Spurr A. R. 1969; A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastrut Res 26:31–43 [CrossRef]
    [Google Scholar]
  44. Szeto J., Ramirez-Arcos S., Raymond C., Hicks L. D., Kay C. M., Dillon J. A. R. 2001; Gonococcal MinD affects cell division in Neisseria gonorrhoeae and Escherichia coli and exhibits a novel self-interaction. J Bacteriol 183:6253–6264 [CrossRef]
    [Google Scholar]
  45. Vasse J., Debilly F., Camut S., Truchet G. 1990; Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306
    [Google Scholar]
  46. Watson R. J., Heys R., Martin T., Savard M. 2001; Sinorhizobium meliloti cells require biotin and either cobalt or methionine for growth. Appl Environ Microbiol 67:3767–3770 [CrossRef]
    [Google Scholar]
  47. Wright R., Stephens C., Shapiro L. 1997; The CcrM DNA methyltransferase is widespread in the alpha subdivision of proteobacteria, and its essential functions are conserved in Rhizobium meliloti and Caulobacter crescentus . J Bacteriol 179:5869–5877
    [Google Scholar]
  48. Young J. P., Crossman L. C., Johnston A. W., Thomson N. R., Ghazoui Z. F., Hull K. H., Wexler M., Curson A. R., Todd J. D. other authors 2006; The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34 [CrossRef]
    [Google Scholar]
  49. Yuan Z. C., Zaheer R., Finan T. M. 2006; Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti . J Bacteriol 188:1089–1102 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/001362-0
Loading
/content/journal/micro/10.1099/mic.0.2006/001362-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error