1887

Abstract

The structure, biological activity and microbial biodiversity of a biofilm used for the removal of copper from groundwater were studied and compared with those of a biofilm grown under copper-free conditions. A laboratory-scale submerged fixed biofilter was fed with groundwater (2.3 l h) artificially polluted with Cu(II) (15 mg l) and amended with sucrose (150 mg l) as carbon source. Between 73 and 90 % of the Cu(II) was removed from water during long-term operation (over 200 days). The biofilm was a complex ecosystem, consisting of eukaryotic and prokaryotic micro-organisms. Scanning electron microscopy revealed marked structural changes in the biofilm induced by Cu(II), compared to the biofilm grown in absence of the heavy metal. Analysis of cell-bound extracellular polymeric substances (EPS) demonstrated a significant modification of the composition of cell envelopes in response to Cu(II). Transmission electron microscopy and energy-dispersive X-ray microanalysis (EDX) showed that copper bioaccumulated in the EPS matrix by becoming bound to phosphates and/or silicates, whereas copper accumulated only intracytoplasmically in cells of eukaryotic microbes. Cu(II) also decreased sucrose consumption, ATP content and alkaline phosphatase activity of the biofilm. A detailed study of the bacterial community composition was conducted by 16S rRNA-based temperature gradient gel electrophoresis (TGGE) profiling, which showed spatial and temporal stability of the species diversity of copper-exposed biofilms during biofilter operation. PCR reamplification and sequencing of 14 TGGE bands showed the prevalence of alphaproteobacteria, with most sequences (78 %) affiliated to the . The major cultivable colony type in plate counts of the copper-exposed biofilm was also identified as that of sp. These data confirm a major role of these organisms in the composition of the Cu(II)-removing community.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002139-0
2007-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/2/325.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002139-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaeffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. APHA 2001 Standard Methods for the Examination of Water and Wastewater , 20th edn. Edited by Clesceri L. S., Greenberg A. E., Eaton A. D. Washington DC: American Public Health Association;
    [Google Scholar]
  3. Balkwill D. L., Fredrickson J. K., Romine M. F. others 2003; Sphingomonas and related genera. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn. release 3.14. 31/07/2003 Edited by Dworkin M. New York: Springer;
    [Google Scholar]
  4. Berman T. 1970; Alkaline phosphatases and phosphorus availability in Lake Kinneret. Limnol Oceanogr 15:663–674 [CrossRef]
    [Google Scholar]
  5. Blindauer C. A., Harrison M. D., Robinson A. K., Parkinson J. A., Bowness P. W., Sadler P. J., Robinson N. J. 2002; Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol Microbiol 45:1421–1432 [CrossRef]
    [Google Scholar]
  6. Blumenkrantz N., Asboe-Hansen G. 1973; New method for quantitative determination of uronic acids. Anal Biochem 54:484–489 [CrossRef]
    [Google Scholar]
  7. Boivin M. E. Y., Massieux B., Breure A. M., Van Den Ende F. P., Greve G. D., Rutgers M., Admiraal W. 2005; Effects of copper and temperature on aquatic bacterial communities. Aquat Microbiol 71:345–356
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  9. Bruins M. R., Kapil S., Ochme F. W. 2000; Microbial resistance to metals in the environment. Ecotoxicol Environ Safety 45:198–207 [CrossRef]
    [Google Scholar]
  10. Brümmer, I. H. M., Felske A., Wagner-Döbler I. 2003; Diversity and seasonal variability of β -Proteobacteria in biofilms of polluted rivers: analysis by temperature-gradient gel electrophoresis and cloning. Appl Environ Microbiol 69:4463–4473 [CrossRef]
    [Google Scholar]
  11. Cameron R. E. 1992; Guide to Site and Soil Description for Hazardous Waste Site Characterization , vol. 1, Metals . Environmental Protection Agency EPA/600/4-91/029
    [Google Scholar]
  12. Costley S. C., Wallis F. M. 2001; Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35:3715–3723 [CrossRef]
    [Google Scholar]
  13. Critchley M. M., Cromar N. J., McClure N. C., Fallowfield H. J. 2003; The influence of the chemical composition of drinking water on cuprosolvency by biofilm bacteria. J Appl Microbiol 94:501–507 [CrossRef]
    [Google Scholar]
  14. Critchley M. M., Pasetto R., O'Halloran R. J. 2004; Microbiological influences in “blue water” copper corrosion. J Appl Microbiol 97:590–597 [CrossRef]
    [Google Scholar]
  15. Dean W. E. 1974; Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sedim Petrol 44:242–248
    [Google Scholar]
  16. Dohelman P., Haanstra L. 1989; Short- and long-term effects of heavy metals on phosphatase activity: an ecological dose-response model approach. Biol Fertility Soils 8:235–241
    [Google Scholar]
  17. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356 [CrossRef]
    [Google Scholar]
  18. Eccles H. 1999; Treatment of metal-contaminated wastes: why select a biological process?. Trends Biotechnol 17:462–465 [CrossRef]
    [Google Scholar]
  19. Fang H. H. P., Xu L. C., Chan K. Y. 2002; Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res 36:4709–4716 [CrossRef]
    [Google Scholar]
  20. Ferris F. G. 1989; Metallic ion interactions with the outer membrane of Gram-negative bacteria. In Metal Ions and Bacteria pp 295–323 Edited by Beveridge T. J., Doyle R. J. New York: Wiley;
    [Google Scholar]
  21. Fraga C. G. 2005; Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244 [CrossRef]
    [Google Scholar]
  22. Gatti D., Mitra B., Rosen B. P. 2000; Escherichia coli soft metal ion-translocating ATPases. J Biol Chem 275:34009–34012 [CrossRef]
    [Google Scholar]
  23. Gómez M. A., Hontoria E., González-López J. 2002; Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter. J Hazard Mater 90:267–278 [CrossRef]
    [Google Scholar]
  24. Hotz C., Lowe N. M., Araya M., Brown K. H. 2003; Assessment of the trace element status of individuals and populations: the example of zinc and copper. J Nutr 133:1563–1568
    [Google Scholar]
  25. Huang Q., Shindo H. 2000; Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol Biochem 32:1885–1892 [CrossRef]
    [Google Scholar]
  26. Jang A., Kim S. M., Kim S. Y., Lee S. G., Kim I. S. 2001; Effect of heavy metals (Cu, Pb, Ni) on the composition of EPS in biofilms. Water Sci Technol 43:41–48
    [Google Scholar]
  27. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405 [CrossRef]
    [Google Scholar]
  28. Karl D. M. 1980; Cellular nucleotide measurements and application in microbial ecology. Microbiol Rev 44:739–796
    [Google Scholar]
  29. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001 MEGA2: Molecular Evolutionary Genetics Analysis software Arizona State University; Tempe, Arizona, USA:
    [Google Scholar]
  30. Lawrence J. R., Chenier M. R., Roy R., Beaumier D., Fortin N., Swerhorne G. D. W., Neu T. R., Greer C. W. 2004; Microscale and molecular assessment of impacts of nickel, nutrients and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339 [CrossRef]
    [Google Scholar]
  31. Leonhäuser J., Röhricht M., Wagner-Döbler I., Deckwer W. D. 2006; Reaction engineering aspects of microbial mercury removal. Eng Life Sci 6:139–148 [CrossRef]
    [Google Scholar]
  32. Malik A. 2004; Metal bioremediation through growing cells. Environ Int 30:261–278 [CrossRef]
    [Google Scholar]
  33. Massieux B., Boivin M. E. Y., Van Den Ende F. P., Marvan P., Barrenguet C., Admiraal W., Laanbroek H. J., Zwart G., Langenskiöld J. 2004; Analysis of structural and physiological profiles to assess the effects of Cu on biofilm microbial communities. Appl Environ Microbiol 70:4512–4521 [CrossRef]
    [Google Scholar]
  34. McComb E. A., McCready R. M. 1957; Determination of acetyl in pectin and acetylated carbohydrate polymers. Anal Chem 29:819–821 [CrossRef]
    [Google Scholar]
  35. Mulligan C. N., Yong R. N., Gibbs B. F. 2001; Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geology 60:193–207 [CrossRef]
    [Google Scholar]
  36. Muyzer G., De Waal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S RNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  37. Nicolaisen M. H., Ramsing N. B. 2002; Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50:189–203 [CrossRef]
    [Google Scholar]
  38. Nielsen P., Jahn A. 2002; Extraction of EPS. In Microbial Extracellular Polymeric Substances. Characterization, Structure and Function pp 49–71 Edited by Winderg J., Neu J., Flemming H. Berlin: Springer;
    [Google Scholar]
  39. Ordax M., Marco-Noales E., Biosca E. G., López M. M. 2006; Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72:3482–3488 [CrossRef]
    [Google Scholar]
  40. Pozo C., Rodelas B., De La Escalera S., González-López J. 2002; d,l-Hydantoinase activity of an Ochrobactrum anthropi strain. J Appl Microbiol 92:1028–1034 [CrossRef]
    [Google Scholar]
  41. Principi P., Villa F., Bernasconi M., Zanardini E. 2006; Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 40:99–106 [CrossRef]
    [Google Scholar]
  42. Renella G., Ortigoza A. L. R., Landi P., Nannipieri P. 2003; Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biol Biochem 35:1203–1210 [CrossRef]
    [Google Scholar]
  43. Rensing C., Grass G. 2003; Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213 [CrossRef]
    [Google Scholar]
  44. Roe J. H., Papadopoulos N. M. 1954; The determination of fructose-6-phosphate and fructose-1,6-diphosphate. J Biol Chem 210:703–707
    [Google Scholar]
  45. Rosen B. P. 2002; Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133:689–693 [CrossRef]
    [Google Scholar]
  46. Rutheford J. C., Bird A. J. 2004; Metal-responsive transcription factors that regulate iron, zinc and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13 [CrossRef]
    [Google Scholar]
  47. Silver S. 1996; Bacterial resistance to toxic metal ions – a review. Gene 179:9–19 [CrossRef]
    [Google Scholar]
  48. Silver S., Phung L. T. 2005; A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605 [CrossRef]
    [Google Scholar]
  49. Speir T. V., Kettles H. A., Parshotam A., Searle P. L., Vlaar L. N. C. 1995; A simple kinetic approach to derive the ecological dose value ED 50, for the assessment of Cr (VI) toxicity to soil biological properties. Soil Biol Biochem 27:801–811 [CrossRef]
    [Google Scholar]
  50. Tchounwou P. B., Abdelghani A. A., Pramar Y. V., Heyer L. R., Steward C. M. 1996; Assessment of potential health risks associated with ingesting heavy metals in fish collected from a hazardous-waste contaminated wetland in Louisiana. Res Environ Health 11:191–203
    [Google Scholar]
  51. Teitzel G. M., Parsek M. R. 2003; Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa . Appl Environ Microbiol 69:2313–2320 [CrossRef]
    [Google Scholar]
  52. Turpeinen R., Kairesalo T., Häggblom M. M. 2004; Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50 [CrossRef]
    [Google Scholar]
  53. Uriu-Adams J. Y., Keen C. L. 2005; Copper, oxidative stress, and human health. Mol Aspects Med 26:268–298 [CrossRef]
    [Google Scholar]
  54. Valls M., De Lorenzo V. 2002; Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338 [CrossRef]
    [Google Scholar]
  55. Vinuesa P., Rademaker J. L. W., De Bruijn F. J., Werner D. 1998; Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104
    [Google Scholar]
  56. von Canstein H., Li Y., Timmis K. N., Deckwer W. D., Wagner-Döbler I. 1999; Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Appl Environ Microbiol 65:5279–5284
    [Google Scholar]
  57. Ward B. B., O'Mullan G. D. O. 2002; Worldwide distribution of Nitrosococcus oceani , a marine ammonia-oxidizing γ -proteobacterium, detected by PCR and sequencing of 16S rRNA and amoA genes. Appl Environ Microbiol 68:4153–4157 [CrossRef]
    [Google Scholar]
  58. Watanabe K., Yamamoto S., Hino S., Harayama S. 1998; Population dynamics of phenol degrading bacteria in activated sludge determined by gyrB -targeted quantitative PCR. Appl Environ Microbiol 64:1203–1209
    [Google Scholar]
  59. Weisburgh W. G., Barn S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  60. White D. C., Sutton S., Ringelberg D. 1995; The genus Sphingomonas : physiology and ecology. Curr Opin Biotechnol 7:301–306 [CrossRef]
    [Google Scholar]
  61. Yu Z., Morrison M. 2004; Comparison of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70:4800–4806 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002139-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002139-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error