1887

Abstract

Glycogen is generally assumed to serve as a major reserve polysaccharide in bacteria. In this work, glycogen accumulation in the amino acid producer was characterized, expression of the gene, encoding the key enzyme in glycogen synthesis, ADP-glucose (ADP-Glc) pyrophosphorylase, was analysed, and the relevance of this enzyme for growth, survival, amino acid production and osmoprotection was investigated. cells grown in medium containing the glycolytic substrates glucose, sucrose or fructose showed rapid glycogen accumulation (up to 90 mg per g dry weight) in the early exponential growth phase and degradation of the polymer when the sugar became limiting. In contrast, no glycogen was detected in cells grown on the gluconeogenic substrates acetate or lactate. In accordance with these results, the specific activity of ADP-Glc pyrophosphorylase was 20-fold higher in glucose-grown than in acetate- or lactate-grown cells. Expression analysis suggested that this carbon-source-dependent regulation might be only partly due to transcriptional control of the gene. Inactivation of the chromosomal gene led to the absence of ADP-Glc pyrophosphorylase activity, to a complete loss of intracellular glycogen in all media tested and to a distinct lag phase when the cells were inoculated in minimal medium containing 750 mM sodium chloride. However, the growth of , its survival in the stationary phase and its glutamate and lysine production were not affected by inactivation under either condition tested. These results indicate that intracellular glycogen formation is not essential for growth and survival of and amino acid production by and that ADP-Glc pyrophosphorylase activity might be advantageous for fast adaptation of to hyperosmotic stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003368-0
2007-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1275.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003368-0&mimeType=html&fmt=ahah

References

  1. Alonso-Casajús N., Dauvillée D., Viale A. M., Munoz F. J., Baroja-Fernandez E., Moran-Zorzano M. T., Eydallin G., Ball S., Pozueto-Romero J. 2006; Glycogen phosphorylase, the product of the glgP gene, catalyzes glycogen breakdown by removing glucose units from the nonreducing ends in Escherichia coli . J Bacteriol 188:5266–5272 [CrossRef]
    [Google Scholar]
  2. Argüelles J. C. 2000; Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224 [CrossRef]
    [Google Scholar]
  3. Baker C. S., Morozov I., Suzuki K., Romeo T., Babitzke P. 2002; CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli . Mol Microbiol 44:1599–1610 [CrossRef]
    [Google Scholar]
  4. Ballicora M. A., Iglesias A. A., Preiss J. 2003; ADP-glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67:213–225 [CrossRef]
    [Google Scholar]
  5. Belanger A. E., Hatfull G. F. 1999; Exponential-phase glycogen recycling is essential for growth of Mycobacterium smegmatis . J Bacteriol 181:6670–6678
    [Google Scholar]
  6. Birnboim H. C. 1983; A rapid alkaline extraction method for the isolation of plasmid DNA. Methods Enzymol 100:5213–5221
    [Google Scholar]
  7. Börmann E. R., Eikmanns B. J., Sahm H. 1992; Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6:317–326 [CrossRef]
    [Google Scholar]
  8. Brockmann-Gretza O., Kalinowski J. 2006; Global gene expression during stringent response in Corynebacterium glutamicm in presence and absence of the rel gene encoding (p)ppGpp synthase. BMC Genomics 7:230 [CrossRef]
    [Google Scholar]
  9. Carpinelli J., Agosin E., Krämer R. 2006; Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955 [CrossRef]
    [Google Scholar]
  10. Daffé M. 2005; The cell envelope of corynebacteria. In Handbook of Corynebacterium glutamicum 123eitalice 123 pp 121–148 Edited by Eggeling L. Bott M. Boca Raton: CRC Press;
    [Google Scholar]
  11. Dauvillée D., Kinderf I. S., Zhongyi L., Kosar-Hashemi B., Samuel M. S., Rampling L., Ball S., Morell M. K. 2005; Role of the Escherichia coli glgX gene in glycogen metabolism. J Bacteriol 187:1465–1473 [CrossRef]
    [Google Scholar]
  12. Eggeling L., Bott M. 2005 Handbook of Corynebacterium glutamicum Boca Raton: CRC Press;
    [Google Scholar]
  13. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H. 1991; Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622 [CrossRef]
    [Google Scholar]
  14. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Ludtke K. U., Sahm H. 1994; Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828 [CrossRef]
    [Google Scholar]
  15. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D., Bairoch A. 2003; expasy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788 [CrossRef]
    [Google Scholar]
  16. Georgi T., Rittmann D., Wendisch V. F. 2005; Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301 [CrossRef]
    [Google Scholar]
  17. Gornall A. G., Bardawill C. J., David M. M. 1949; Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766
    [Google Scholar]
  18. Greene T. W., Woodbury R. L., Okita T. W. 1996; Aspartic acid 413 is important for the normal allosteric functioning of ADP-glucose pyrophosphorylase. Plant Physiol 112:1315–1320 [CrossRef]
    [Google Scholar]
  19. Guillouet S., Engasser J. M. 1995; Sodium and proline accumulation in Corynebacterium glutamicum as a response to an osmotic saline upshock. Appl Microbiol Biotechnol 44:496–500 [CrossRef]
    [Google Scholar]
  20. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  21. Hueck C. J., Hillen W., Saier M. H. Jr 1994; Analysis of cis -active sequence mediating catabolite repression in gram-positive bacteria. Res Microbiol 145:503–518 [CrossRef]
    [Google Scholar]
  22. Igarashi R. Y., Meyer C. R. 2000; Cloning and sequencing of glycogen metabolism genes from Rhodobacter sphaeroides 2.4.1. Expression and characterization of recombinant ADP-glucose pyrophosphorylase. Arch Biochem Biophys 376:47–58 [CrossRef]
    [Google Scholar]
  23. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [CrossRef]
    [Google Scholar]
  24. Kalinowski J., Bathe B., Bartels D., Bischoff M., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. & other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [CrossRef]
    [Google Scholar]
  25. Kiel J. A., Boels J. M., Beldman G., Venema G. 1994; Glycogen in Bacillus subtilis : molecular characterisation of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol 11:203–218 [CrossRef]
    [Google Scholar]
  26. Lepek V. C., D'Antuono A. L., Tomatis P. E., Ugalde J. E., Giambiagi S., Ugalde R. A. 2002; Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase ( pgm ) and glycogensynthase ( glgA ) null mutants on nodulation of Lotus tenuis . Mol Plant Microbe Interact 15:368–375 [CrossRef]
    [Google Scholar]
  27. Liu M. Y., Yan H., Romeo T. 1995; The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability. J Bacteriol 177:2663–2672
    [Google Scholar]
  28. Martin M. C., Schneider D., Bruton C. J., Chater K. F., Hardisson C. 1997; A glgC gene essential only for the first of two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2. J Bacteriol 179:7784–7789
    [Google Scholar]
  29. Mildvan A. S., Xia Z., Azurmendi H. F., Saraswat V., Legler P. M., Massiah M. A., Gabelli S. B., Bianchet M. A., Kang L. W., Amzel L. M. 2005; Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 433:129–143 [CrossRef]
    [Google Scholar]
  30. Moreno-Bruna B., Baroja-Fernandez E., Munoz F. J., Bastarrica-Berasategui A., Zandueta-Criado A., Rodriguez-Lopez M., Lasa I., Akazawa T., Pozueta-Romero J. 2001; Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli . Proc Natl Acad Sci U S A 98:8128–8132 [CrossRef]
    [Google Scholar]
  31. Padilla L., Stephanopoulos G., Agosin E., Krämer R. 2004a; Overproduction of trehalose: heterologous expression of Escherichia coli trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in Corynebacterium glutamicum . Appl Environ Microbiol 70:370–376 [CrossRef]
    [Google Scholar]
  32. Padilla L., Morbach S., Agosin E., Krämer R. 2004b; Impact of heterologous expression of Escherichia coli UDP-glucose pyrophosphorylase on trehalose and glycogen synthesis in Corynebacterium glutamicum . Appl Environ Microbiol 70:3845–3854 [CrossRef]
    [Google Scholar]
  33. Parrou J. L., Francois J. 1997; A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem 248:196–188
    [Google Scholar]
  34. Preiss J. 1984; Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458 [CrossRef]
    [Google Scholar]
  35. Preiss J. 1996; ADPglucose pyrophosphorylase: basic science and applications in biotechnology. Biotechnol Annu Rev 2:259–279
    [Google Scholar]
  36. Preiss J., Romeo T. 1994; Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47:299–329
    [Google Scholar]
  37. Puech V., Bayan N., Salim K., Leblon G., Daffe M. 2000; Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol 35:1026–1041 [CrossRef]
    [Google Scholar]
  38. Radmacher E., Stansen K. C., Besra G. S., Alderwick L. J., Maughan W. N., Hollweg G., Sahm H., Wendisch V. F., Eggeling L. 2005; Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis , elicits l-glutamate efflux of Corynebacterium glutamicum . Microbiology 151:1359–1368 [CrossRef]
    [Google Scholar]
  39. Reinscheid D. J., Schnicke S., Rittmann D., Zahnow U., Sahm H., Eikmanns B. J. 1999; Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145:503–513 [CrossRef]
    [Google Scholar]
  40. Romeo T., Preiss J. 1989; Genetic regulation of glycogen biosynthesis in Escherichia coli : in vitro effects of cyclic AMP and guanosine 5′-diphosphate and analysis of in vivo transcripts. J Bacteriol 171:2773–2782
    [Google Scholar]
  41. Romeo T., Kumar A., Preiss J. 1998; Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among biosynthetic genes. Gene 70:363–376
    [Google Scholar]
  42. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  44. Schreiner M. E., Fiur D., Eikmanns B. J., Holátko J., Pátek M. 2005; E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum : molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018 [CrossRef]
    [Google Scholar]
  45. Schrumpf B., Schwarzer A., Kalinowski J., Eggeling L., Sahm H., Pühler A. 1991; A functional split pathway for lysine biosynthesis in Corynebacterium glutamicum . J Bacteriol 173:4510–4516
    [Google Scholar]
  46. Seibold G., Auchter M., Berens S., Kalinowski J., Eikmanns B. J. 2006; Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J Biotechnol 124:381–391 [CrossRef]
    [Google Scholar]
  47. Stülke J., Hillen W. 2000; Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880 [CrossRef]
    [Google Scholar]
  48. Takata H., Takaha T., Okada S., Takagi M., Imanaka M. 1997; Characterization of a gene cluster for glycogen biosynthesis and heterotetrameric ADP-glucose pyrophosphorylase from Bacillus stearothermophilus . J Bacteriol 179:4689–4698
    [Google Scholar]
  49. Tauch A., Homann I., Mormann S., Billault A., Bathe B., Brand S., Brockmann-Gretza O., Rüberg S., Rückert C. other authors 2002; Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 95:25–38 [CrossRef]
    [Google Scholar]
  50. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  51. Tzvetkov M., Klopprogge C., Zelder O., Liebl W. 2003; Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum : inactivation of trehalose production leads to impaired growth and an altered cell wall composition. Microbiology 149:1659–1673 [CrossRef]
    [Google Scholar]
  52. Ugalde J. E., Lepek V., Uttaro A., Estrella J., Iglesias A., Ugalde R. A. 1998; Gene organization and transcript analysis of the Agrobacterium tumefaciens glycogen ( glg ) operon: two transcripts for the single phosphoglucomutase gene. J Bacteriol 180:6557–6564
    [Google Scholar]
  53. Văsicová P., Abrámová Z., Nesvera J., Sahm H., Eikmanns B. J., Pátek M. 1998; Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum . Biotechnol Tech 12:743–746 [CrossRef]
    [Google Scholar]
  54. Wolf A., Morbach S., Krämer R. 2003; Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC 13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134 [CrossRef]
    [Google Scholar]
  55. Yang H., Liu M. Y., Romeo T. 1996; Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J Bacteriol 178:1012–1017
    [Google Scholar]
  56. Yokota A., Lindley N. D. 2005; Central metabolism: sugar uptake and conversion. In Handbook of Corynebacterium glutamicum pp 215–240 Edited by Eggeling L. Bott M. Boca Raton: CRC Press;
    [Google Scholar]
  57. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridisation prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003368-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003368-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error