1887

Abstract

The purple sulfur bacterium can use elemental sulfur as an electron donor for anoxygenic photosynthesis. The elemental sulfur is taken up, transformed into intracellular sulfur globules and oxidized to sulfate. Commercially available ‘elemental’ sulfur usually consists of the two species -octasulfur and polymeric sulfur. The authors investigated whether only one sulfur species is used or at least preferred when takes up elemental sulfur and forms globules. To this end, was cultivated photolithoautotrophically with two types of elemental sulfur that differed in their -octasulfur : polymeric sulfur ratio, as well as with pure polymeric sulfur. Sulfur speciation was analysed using X-ray absorption spectroscopy, and sulfate contents were determined by HPLC to quantify the amount of elemental sulfur being taken up and oxidized by . The results show that uses only the polymeric sulfur (sulfur chain) fraction of elemental sulfur and is probably unable to take up and form sulfur globules from -octasulfur. Furthermore, direct cell–sulfur contact appears to be necessary for uptake of elemental sulfur by .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003954-0
2007-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1268.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003954-0&mimeType=html&fmt=ahah

References

  1. Baldensperger J., Guarraia L. J., Humphreys W. J. 1974; Scanning electron microscopy of thiobacilli grown on colloidal sulfur. Arch Microbiol 99:323–329 [CrossRef]
    [Google Scholar]
  2. Borkenstein C., Fischer U. 2006; Bioavailability of elemental sulfur by Prosthecochloris vibrioformis proceeds via a reduction to sulfide. In Abstracts of the International Symposium on Microbial Sulfur Metabolism ISMSM 29 June to 2 July 2006 Münster, Germany: p 94
    [Google Scholar]
  3. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  4. Brune D. C. 1995; Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina . Arch Microbiol 163:391–399 [CrossRef]
    [Google Scholar]
  5. Brüser T., Lens P. N., Trüper H. G. 2000; The biological sulfur cycle. In Environmental Technologies to Treat Sulfur Pollution pp 47–85 Edited by Lens P., Hunshoff Pol L. London: IWA Publishing;
    [Google Scholar]
  6. Bryant R. D., Costerton J. W., Laishley E. J. 1984; The role of Thiobacillus albertis glycocalyx in the adhesion of cells to elemental sulfur. Can J Microbiol 30:81–90 [CrossRef]
    [Google Scholar]
  7. Dahl C., Prange A. 2006; Bacterial sulfur globules: occurrence, structure and metabolism. In Bacterial Inclusions, chapter 2 pp 21–51 Microbiology Monographs, vol 1) Edited by Shively J. M. New York: Springer;
    [Google Scholar]
  8. Espejo R. T., Romero P. 1987; Growth of Thiobacillus ferrooxidans on elemental sulfur. Appl Environ Microbiol 53:1907–1912
    [Google Scholar]
  9. Gehrke T., Telegdi J., Thierry D., Sand W. 1998; Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747
    [Google Scholar]
  10. Harneit K., Kock D., Klock J., Gehrke T., Sand W., Göksel A. 2006; Adhesion to sulfur and metal sulfide surfaces by leaching bacteria. In Abstracts of the International Symposium on Microbial Sulfur Metabolism ISMSM 29 June to 2 July 2006 Münster, Germany: p 148
    [Google Scholar]
  11. Hensen D., Sperling D., Brune D. C., Dahl C., Trüper H. G. 2006; Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum . Mol Microbiol 62:794–810 [CrossRef]
    [Google Scholar]
  12. Hormes J., Scott J. D., Suller V. 2006; Facility update: the Center for Advanced Microstructures and Devices: a status report. Synchr Rad News 19:27–30 [CrossRef]
    [Google Scholar]
  13. Kelly D. P., Wood A. P. 2000; Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516 [CrossRef]
    [Google Scholar]
  14. Laishley E. J., Bryant R. D., Kobryn B. W., Hyne J. B. 1986; Microcrystalline structure and surface area of elemental sulphur as factors influencing its oxidation by Thiobacillus albertis . Can J Microbiol 32:237–242 [CrossRef]
    [Google Scholar]
  15. Lemonnier M., Collet O., Depautex C., Esteva J.-M., Raoux D. 1978; High vacuum two crystal soft X-ray monochromator. Nucleic Instr Methods 152:109–111 [CrossRef]
    [Google Scholar]
  16. Modrow H., Visel F., Zimmer R., Hormes J. 2001; Monitoring thermal oxidation of sulfur crosslinks in SBR-elastomers by quantitative analysis of sulfur K-edge XANES-spectra. Rubber Chem Technol 74:281–294 [CrossRef]
    [Google Scholar]
  17. Ohmura N., Tsugita K., Koizumi J.-I., Saiki H. 1996; Sulfur-binding protein of flagella of Thiobacillus ferrooxidans . J Bacteriol 178:5776–5780
    [Google Scholar]
  18. Paschinger H., Paschinger J., Gaffron H. 1974; Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum . Arch Microbiol 96:341–351 [CrossRef]
    [Google Scholar]
  19. Pfennig N., Trüper H. G. 1974; The phototrophic bacteria. In Bergey's Manual of Determinative Bacteriology , 8th edn. pp 24–64 Edited by Buchanan R. E. Gibbson N. E. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Prange A., Modrow H. 2002; X-ray absorption spectroscopy and its application in biological, agricultural and environmental research. Re/Views Environ Sci Bio/Technol 1:259–276 [CrossRef]
    [Google Scholar]
  21. Prange A., Arzberger I., Engemann C., Modrow H., Schumann O., Steudel R., Dahl C., Hormes J., Trüper H. G. 1999; In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochim Biophys Acta 1428446–454 [CrossRef]
    [Google Scholar]
  22. Prange A., Modrow H., Hormes J., Dahl C., Chauvistré R., Trüper H. G. 2002a; Quantitative speciation of sulfur in bacterial sulfur globules: X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology 148:267–276
    [Google Scholar]
  23. Prange A., Dahl C., Behnke M., Hahn J., Modrow H., Hormes J., Trüper H. G. 2002b; Investigation of S-H bonds in biologically important compounds by sulfur K-edge X-ray absorption spectroscopy. Eur Phys J D 20:589–596 [CrossRef]
    [Google Scholar]
  24. Prange A., Birzele B., Modrow H., Hormes J., Krämer J., Chauvistré R., Köhler P. 2003; Characterization of sulfur speciation in low molecular weight subunits of glutenin after reoxidation with potassium iodate and potassium bromate at different pH values using X-ray absorption near-edge structure (XANES) spectroscopy. J Agric Food Chem 51:7431–7438 [CrossRef]
    [Google Scholar]
  25. Prange A., Modrow H., Hormes J., Krämer J., Köhler P. 2005; Influence of mycotoxin producing fungi ( Fusarium , Aspergillus , Penicillium ) on gluten proteins during suboptimal storage of wheat after harvest and competitive interactions between field and storage fungi. J Agric Food Chem 53:6930–6938 [CrossRef]
    [Google Scholar]
  26. Prange A., Hormes J., Modrow H. 2007; X-ray absorption spectroscopy as a tool for the detection and identification of sulfur compounds in photototrophic organisms. In Sulfur Metabolism in Phototrophic OrganismsAdvances in Photosynthesis and Respiration in press. Edited by Hell R., Dahl C., Knaff D., Leustek T. Berlin: Springer;
    [Google Scholar]
  27. Pronk J. T., De Bruyn J. C., Kuenen J. G. 1992; Anaerobic growth of Thiobacillus ferrooxidans . Appl Environ Microbiol 58:2227–2230
    [Google Scholar]
  28. Ramírez P., Guiliani N., Valenzuela L., Beard S., Jerez C. A. 2004; Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498 [CrossRef]
    [Google Scholar]
  29. Ressler T. 1998; WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchr Rad 5:118–122 [CrossRef]
    [Google Scholar]
  30. Rethmeier J., Rabenstein A., Langer M., Fischer U. 1997; Determination of traces of oxidized and reduced sulfur compounds in small samples by combination of different high-performance liquid chromatography methods. J Chromatogr A 760:295–302 [CrossRef]
    [Google Scholar]
  31. Roy A. B., Trudinger P. A. 1970 The Biochemistry of Inorganic Compounds of Sulfur London: Cambridge University Press;
    [Google Scholar]
  32. Schaeffer W. I., Holbert P. E., Umbreit W. W. 1963; Attachment of Thiobacillus thiooxidans to sulfur crystals. J Bacteriol 85:137–140
    [Google Scholar]
  33. Silver M. 1970; Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans ( Thiobacillus ferrooxidans . Can J Microbiol 16:845–849 [CrossRef]
    [Google Scholar]
  34. Steudel R. 1996; Das gelbe Element und seine erstaunliche Vielseitigkeit. Chemie in unserer Zeit 30:226–234 in German [CrossRef]
    [Google Scholar]
  35. Steudel R. 2000; The chemical sulfur cycle. In Environmental Technologies to Treat Sulfur Pollution pp 1–31 Edited by Lens P., Hulshoff Pol W. London: IWA Publishing;
    [Google Scholar]
  36. Steudel R., Eckert B. 2003; Solid sulfur allotropes. In Elemental Sulfur and Sulfur-Rich Compounds I pp 1–79 Topics in Current Chemistry vol 230 Edited by Steudel R. Berlin: Springer;
    [Google Scholar]
  37. Steudel R., Strauss R., Koch L. 1985; Quantitative HPLC-Analyse und Thermodynamik der Schwefelschmelze. Angew Chem 97:58–59 in German [CrossRef]
    [Google Scholar]
  38. Takakuwa S., Fujimori T., Iwasaki H. 1979; Some properties of cell–sulfur adhesion in Thiobacallus thiooxidans . J Gen Appl Microbiol 25:21–29 [CrossRef]
    [Google Scholar]
  39. Thiele H. H. 1968; Die Verwertung einfacher organischer Substanzen durch Thiorhodaceae. Arch Mikrobiol 60:124–138 in German [CrossRef]
    [Google Scholar]
  40. Urich T., Gomes C. M., Kletzin A., Frazão C. 2006; X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311:996–1000 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003954-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003954-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error