1887

Abstract

The phosphatidylinositol (PtdIns) 3-kinase Vps34p of the human pathogenic yeast participates in virulence and in protein transport. In order to dissect these two functions, a search for proteins interacting with Vps34p was performed using a yeast two-hybrid system. This study demonstrates the physical interaction between Vps34p and Ade5,7p, which is the bifunctional enzyme of the purine nucleotide biosynthetic pathway. The interaction initially observed in a yeast two-hybrid system was confirmed with recombinant proteins. Given the complex formation between Ade5,7p and the virulence-regulating Vps34p, it was of interest to characterize the function of Ade5,7p in . To this end, , null mutants were generated. The resulting mutants were adenine deficient, and sensitive to the presence of metal ions. In addition, the , null mutants were avirulent in a mouse model of systemic candidiasis, and showed reduced hyphal growth in an agar matrix under embedded conditions. In summary, Ade5,7p interacts with the multifunctional virulence regulator PtdIns 3-kinase Vps34p, and , and null mutant strains show similar phenotypes regarding sensitivity to metal ions, hyphal growth and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004028-0
2007-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2351.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004028-0&mimeType=html&fmt=ahah

References

  1. Arnaud M. B., Costanzo M. C., Skrzypek G., Lane C., Miyasato S. R., Sherlock G. 2005; The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information. Nucleic Acids Res 33:D358–D363 [CrossRef]
    [Google Scholar]
  2. Arndt K. T., Styles C., Fink G. R. 1987; Multiple global regulators control HIS4 transcription in yeast. Science 237:874–880 [CrossRef]
    [Google Scholar]
  3. Brown D. H. Jr, Giusani A. D., Chen X., Kumamoto C. A. 1999; Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662 [CrossRef]
    [Google Scholar]
  4. Bruckmann A., Wetzker R., Eck R., Künkel W., Härtl A. 2000; A phosphatidylinositol 3-kinase of Candida albicans influences adhesion, filamentous growth, and virulence. Microbiology 146:2755–2764
    [Google Scholar]
  5. Cheng S., Nguyen M. H., Zhang Z., Jia H., Handfield M., Clancy C. J. 2003; Evaluation of the roles of four Candida albicans genes in virulence by using gene disruption strains that express URA3 from the native locus. Infect Immun 71:6101–6103 [CrossRef]
    [Google Scholar]
  6. Cutler J. E. 1991; Putative virulence factors of Candida albicans. Annu Rev Microbiol 45:187–218 [CrossRef]
    [Google Scholar]
  7. D'Enfert C., Goyard S., Rodriguez-Arnaveilhe S., Frangeul L., Jones L., Tekaia F., Bader O., Albrecht A., Castillo L. other authors 2005; CandidaDB: a genome database for Candida albicans pathogenomics. Nucleic Acids Res 33:D353–D357
    [Google Scholar]
  8. Daignan-Fornier B., Fink G. R. 1992; Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci U S A 89:6746–6750 [CrossRef]
    [Google Scholar]
  9. Davis D., Mitchell A. P., Ibrahim A. S., Edwards J. E. Jr 2000; Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959 [CrossRef]
    [Google Scholar]
  10. Deutschbauer A. M., Jaramillo D. F., Proctor M., Kumm J., Hillenmeyer M. E., Davis R. W., Nislow C., Giaever G. 2005; Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–1925 [CrossRef]
    [Google Scholar]
  11. Donovan M., Schumuke J. J., Fonzi W. A., Bonar S. L., Gheesling-Mullis K., Jacob G. S., Davisson V. J., Dotson S. B. 2001; Virulence of a phosphoribosylaminoimidazole carboxylase-deficient Candida albicans strain in an immunosuppressed murine model of systemic candidiasis. Infect Immun 69:2542–2548 [CrossRef]
    [Google Scholar]
  12. Eck R., Bruckmann A., Wetzker R., Künkel W. 2000; A phosphatidylinositol 3-kinase of Candida albicans : molecular cloning and characterization. Yeast 16:933–944 [CrossRef]
    [Google Scholar]
  13. Eck R., Nguyen M., Zipfel P. F., Günther J., Künkel W. 2005; The phosphatidylinositol 3-kinase Vps34p of the human pathogenic yeast Candida albicans is a multifunctional protein that interacts with the putative vacuolar H+-ATPase subunit Vma7p. Int J Med Microbiol 295:57–66 [CrossRef]
    [Google Scholar]
  14. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  15. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728
    [Google Scholar]
  16. Giaever G., Chu A. M., Ni L., Connelly C., Riles L., Veronneau S., Dow S., Lucau-Danila A., Anderson K. other authors 2002; Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391 [CrossRef]
    [Google Scholar]
  17. Giusani A. D., Vinces M., Kumamoto C. A. 2002; Invasive filamentous growth of Candida albicans is promoted by Czf1p-dependent relief of Efg1p-mediated repression. Genetics 160:1749–1753
    [Google Scholar]
  18. Gola S., Martin R., Walther A., Dunkler A., Wendland J. 2003; New modules for PCR-based gene targeting in Candida albicans : rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast 20:1339–1347 [CrossRef]
    [Google Scholar]
  19. Härtl A., Hillesheim H. G., Schrinner E. J., Künkel W. 1995; The Candida infected hen's egg. An alternative test system for systemic anticandida activity. Arzneimittelforschung 45:926–928
    [Google Scholar]
  20. Härtl A., Möllmann U., Schrinner E., Stelzner A. 1997; Pseudomonas aeruginosa infection in embryonated hen's eggs. Arzneimittelforschung 47:1061–1064
    [Google Scholar]
  21. Henikoff S. 1987; Multifunctional polypeptides for purine de novo synthesis. Bioessays 6:8–13 [CrossRef]
    [Google Scholar]
  22. Ho Y., Gruhler A., Heilbut A., Bader G. D., Moore L., Adams S. L., Millar A., Taylor P., Bennett K. other authors 2002; Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183 [CrossRef]
    [Google Scholar]
  23. Jones E. W., Fink G. R. 1982 In The Molecular Biology of the Yeast Saccharomyces – Metabolism and Gene Expression pp 181–299 Edited by Strathern J. N., Jones E. W., Broach J. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Kitanovic A., Nguyen M., Vogel G., Hartmann A., Eck R., Günther J., Würzner R., Künkel W., Wölfl S. 2005; Phosphatidylinositol 3-kinase VPS34 of Candida albicans is involved in filamentous growth, Saps secretion, and intracellular detoxification. FEMS Yeast Res 5:431–439 [CrossRef]
    [Google Scholar]
  25. Köhler J. R., Fink G. R. 1996; Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A 93:13223–13228 [CrossRef]
    [Google Scholar]
  26. Kranz A., Kinner A., Kölling R. 2001; A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol Biol Cell 12:711–723 [CrossRef]
    [Google Scholar]
  27. Lay J., Henry L. K., Clifford J., Koltin Y., Bulawa C. E., Becker J. M. 1998; Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66:5301–5306
    [Google Scholar]
  28. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153 [CrossRef]
    [Google Scholar]
  29. Liu T. T., Lee R. E. B., Barker K. S., Lee R. E., Wei L., Homayouni R., Rogers P. D. 2005; Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49:2226–2236 [CrossRef]
    [Google Scholar]
  30. Madani N. D., Malloy P. J., Rodriguez-Pombo P., Krishnan A. V., Feldman D. 1994; Candida albicans estrogen-binding protein gene encodes an oxidoreductase that is inhibited by estradiol. Proc Natl Acad Sci U S A 91:922–926 [CrossRef]
    [Google Scholar]
  31. Negredo A., Monteoliva L., Gil C., Pla J., Nombela C. 1997; Cloning, analysis and one-step disruption of the ARG5,6 gene of Candida albicans. Microbiology 143:297–302 [CrossRef]
    [Google Scholar]
  32. Odds F. C. 1994; Pathogenesis of Candida infections. J Am Acad Dermatol 31:S2–S5 [CrossRef]
    [Google Scholar]
  33. Perzov N., Nelson H., Nelson N. 2000; Altered distribution of the yeast plasma membrane H+-ATPase as a feature of vacuolar H+-ATPase null mutants. J Biol Chem 275:40088–40095 [CrossRef]
    [Google Scholar]
  34. Peto R., Pike M. C., Armitage P., Breslow N. E., Cox D. R. V., Howard S., Mantel N., McPherson K., Peto J., Smith P. G. 1977; Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. Analysis and examples. Br J Cancer 35:1–39 [CrossRef]
    [Google Scholar]
  35. Poltermann S., Nguyen M., Zipfel P. F., Eck R., Günther J., Wendland J., Härtl A., Künkel W. 2005; The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. Microbiology 151:1645–1655 [CrossRef]
    [Google Scholar]
  36. Riggle P. J., Kumamoto C. A. 2000; Role of the Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. J Bacteriol 182:4899–4905 [CrossRef]
    [Google Scholar]
  37. Rolfes R. J., Hinnebusch A. G. 1993; Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 13:5099–5111
    [Google Scholar]
  38. Tripathi G., Wiltshire C., Macaskill S., Tournu H., Budge S., Brown A. J. P. 2002; Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21:5448–5456 [CrossRef]
    [Google Scholar]
  39. Underwood E. J. 1977 Trace Elements in Human and Animal Nutrition London: Academic Press;
    [Google Scholar]
  40. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
  41. Yin Z., Stead D., Selway L., Walker J., Riba-Garcia I., Mclnerney T., Gaskell S., Oliver S. G., Cash P., Brown A. J. P. 2004; Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4:2425–2436 [CrossRef]
    [Google Scholar]
  42. Zalkin H. Z., Dixon J. E. 1992; De novo purine nucleotide biosynthesis. Prog Nucleic Acid Res Mol Biol 42:259–287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004028-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004028-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error