1887

Abstract

The Lyme disease spirochaete, , produces the LuxS enzyme both and ; this enzyme catalyses the synthesis of homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) from a by-product of methylation reactions. Unlike most bacteria, . is unable to utilize homocysteine. However, DPD levels alter expression levels of a subset of proteins. The present studies demonstrate that a single operon encodes both of the enzymes responsible for synthesis of DPD, as well as the enzyme for production of the Lyme spirochaete's only activated-methyl donor and a probable phosphohydrolase. Evidence was found for only a single transcriptional promoter, located 5′ of the first gene, which uses the housekeeping subunit for RNA polymerase holoenzyme function. All four genes are co-expressed, and mRNA levels are growth-rate dependent, being produced during the exponential phase. Thus, high metabolic activity is accompanied by increased cellular levels of the only known borrelial methyl donor, enhanced detoxification of methylation by-products, and increased production of DPD. Therefore, production of DPD is directly correlated with cellular metabolism levels, and may thereby function as an extracellular and/or intracellular signal of bacterial health.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004424-0
2007-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2304.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004424-0&mimeType=html&fmt=ahah

References

  1. Andrade M. O., Alegria M. C., Guzzo C. R., Docena C., Pareda Rosa M. C., Ramos C. H., Farah C. S. 2006; The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 62:537–551 [CrossRef]
    [Google Scholar]
  2. Aravind L., Koonin E. V. 1998; The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23:469–472 [CrossRef]
    [Google Scholar]
  3. Babb K., Wattier R. L., Riley S. P., Stevenson B., von Lackum K. 2005; Synthesis of autoinducer 2 by the Lyme disease spirochete, Borrelia burgdorferi. J Bacteriol 187:3079–3087 [CrossRef]
    [Google Scholar]
  4. Barbour A. G. 1984; Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525
    [Google Scholar]
  5. Beeston A. L., Surette M. G. 2002; pfs -dependent regulation of autoinducer 2 production in Salmonella enterica serovar typhimurium. J Bacteriol 184:3450–3456 [CrossRef]
    [Google Scholar]
  6. Blevins J. S., Revel A. T., Caimano M. J., Yang X. F., Richardson J. A., Hagman K. E., Norgard M. V. 2004; The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun 72:4864–4867 [CrossRef]
    [Google Scholar]
  7. Caimano M. J., Eggers C. H., Hazlett K. R., Radolf J. D. 2004; RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72:6433–6445 [CrossRef]
    [Google Scholar]
  8. Camilli A., Bassler B. L. 2006; Bacterial small-molecule signaling pathways. Science 311:1113–1116 [CrossRef]
    [Google Scholar]
  9. Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L., Hughson F. M. 2002; Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549 [CrossRef]
    [Google Scholar]
  10. Elias A. F., Bono J. L., Carroll J. A., Stewart P., Tilly K., Rosa P. 2000; Altered stationary-phase response in a Borrelia burgdorferi rpoS mutant. J Bacteriol 182:2909–2918 [CrossRef]
    [Google Scholar]
  11. Elias A. F., Stewart P. E., Grimm D., Caimano M. J., Eggers C. H., Tilly K., Bono J. L., Akins D. R., Radolf J. D. other authors 2002; Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70:2139–2150 [CrossRef]
    [Google Scholar]
  12. Fisher M. A., Grimm D., Henion A. K., Elias A. F., Stewart P. E., Rosa P. A., Gherardini F. C. 2005; Borrelia burgdorferi σ 54 is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102:5162–5167 [CrossRef]
    [Google Scholar]
  13. Fraser C. M., Casjens S., Huang W. M., Sutton G. G., Clayton R., Lathigra R., White O., Ketchum K. A., Dodson R. other authors 1997; Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586 [CrossRef]
    [Google Scholar]
  14. Fraser C. M., Norris S. J., Weinstock G. M., White O., Sutton G. G., Dodson R., Gwinn M., Hickey E. K., Clayton R. other authors 1998; Complete genome sequence of Treponema pallidum , the syphilis spirochete. Science 281:375–388 [CrossRef]
    [Google Scholar]
  15. Galperin M. Y., Natale D. A., Aravind L., Koonin E. V. 1999; A specialized version of the HD hydrolase domain implicated in signal transduction. J Mol Microbiol Biotechnol 1:303–305
    [Google Scholar]
  16. Galperin M. Y., Nikolskaya A. N., Koonin E. V. 2001; Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21 [CrossRef]
    [Google Scholar]
  17. Gilmore R. D. Jr, Mbow M. L., Stevenson B. 2001; Analysis of Borrelia burgdorferi gene expression during life cycle phases of the tick vector Ixodes scapularis. Microbes Infect 3:799–808 [CrossRef]
    [Google Scholar]
  18. Greene R. C., Hunter J. S. V., Coch E. H. 1973; Properties of metK mutants of Escherichia coli. J Bacteriol 115:57–67
    [Google Scholar]
  19. Hübner A., Yang X., Nolen D. M., Popova T. G., Cabello P. C., Norgard M. V. 2001; Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729 [CrossRef]
    [Google Scholar]
  20. Hübner A., Revel A. T., Nolen D. M., Hagman K. E., Norgard M. V. 2003; Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation. Infect Immun 71:2892–2896 [CrossRef]
    [Google Scholar]
  21. Lu S. C. 2000; S -Adenosylmethionine. Int J Biochem Cell Biol 32:391–395 [CrossRef]
    [Google Scholar]
  22. Miller J. C. 2006; Example of real-time quantitative reverse transcription-PCR (Q-RT-PCR) analysis of bacterial gene expression during mammalian infection: Borrelia burgdorferi in mouse tissues. In Current Protocols in Microbiology pp 1D.3.1–1D.3.28 Edited by Cioco T. K. R., Quarles J. M., Stevenson B., Tyler R. K. New York: Wiley;
    [Google Scholar]
  23. Miller S. T., Xavier K. B., Campagna S. R., Taga M. E., Semmelhack M. F., Bassler B. L., Hughson F. M. 2004; Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell 15:677–687 [CrossRef]
    [Google Scholar]
  24. Narasimhan S., Santiago F., Koski R. A., Brei B., Anderson J. F., Fish D., Fikrig E. 2002; Examination of the Borrelia burgdorferi transcriptome in Ixodes scapularis during feeding. J Bacteriol 184:3122–3125 [CrossRef]
    [Google Scholar]
  25. Newman E. B., Budman L. I., Chan E. C., Greene R. C., Lin R. T., Woldringh C. L., D'Ari R. 1998; Lack of S -adenosylmethionine results in a cell division defect in Escherichia coli. J Bacteriol 180:3614–3619
    [Google Scholar]
  26. Redfield R. J. 2002; Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10:365–370 [CrossRef]
    [Google Scholar]
  27. Ryan R. P., Fouhy Y., Lucey J. F., Crossman L. C., Spiro S., He Y. W., Zhang L. H., Heeb S., Camara M. other authors 2006a; Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103:6712–6717 [CrossRef]
    [Google Scholar]
  28. Ryan R. P., Fouhy Y., Lucey J. F., Dow J. M. 2006b; Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188:8327–8334 [CrossRef]
    [Google Scholar]
  29. Ryan R. P., Fouhy Y., Lucey J. F., Jiang B., He Y. W., Feng J., Tang J., Dow J. M. 2007; Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol Microbiol 63:429–442 [CrossRef]
    [Google Scholar]
  30. Ryjenkov D. A., Tarutina M., Moskvin O. V., Gomelsky M. 2005; Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798 [CrossRef]
    [Google Scholar]
  31. Slater H., Alvarez-Morales A., Barber C. E., Daniels M. J., Dow J. M. 2000; A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38:986–1003
    [Google Scholar]
  32. Steere A. C. 2001; Lyme disease. N Engl J Med 345:115–125 [CrossRef]
    [Google Scholar]
  33. Stevenson B., Babb K. 2002; LuxS-mediated quorum sensing in Borrelia burgdorferi , the Lyme disease spirochete. Infect Immun 70:4099–4105 [CrossRef]
    [Google Scholar]
  34. Stevenson B., Wattier R. L., McAlister J. D., Miller J. C., Babb K., von Lackum K. 2003; Quorum sensing by the Lyme disease spirochete. Microbes Infect 5:991–997 [CrossRef]
    [Google Scholar]
  35. Sun J., Daniel R., Wagner-Dobler I., Zeng A. P. 2004; Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 4:36 [CrossRef]
    [Google Scholar]
  36. von Lackum K., Babb K., Riley S. P., Wattier R. L., Bykowski T., Stevenson B. 2006; Functionality of Borrelia burgdorferi LuxS: the Lyme disease spirochete produces and responds to the pheromone autoinducer-2 and lacks a complete activated-methyl cycle. Int J Med Microbiol 296 :Suppl. 4092–102
    [Google Scholar]
  37. von Lackum K., Ollison K. M., Bykowski T., Nowalk A. J., Hughes J. L., Carroll J. A., Stevenson B., Zückert W. R. 2007; Regulated synthesis of the Borrelia burgdorferi inner-membrane lipoprotein IpLA7 (P22, P22-A) during the Lyme disease spirochete's mammal-tick infectious cycle. Microbiology 153:1361–1371 [CrossRef]
    [Google Scholar]
  38. Wang S., Arends S. J., Weiss D. S., Newman E. B. 2005; A deficiency in S -adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12. Mol Microbiol 58:791–799 [CrossRef]
    [Google Scholar]
  39. Wei Y., Newman E. B. 2002; Studies on the role of the metK gene product of Escherichia coli K12. Mol Microbiol 43:1651–1656 [CrossRef]
    [Google Scholar]
  40. Winzer K., Hardie K. R., Burgess N., Doherty N., Kirke D., Holden M. T., Linforth R., Cornell K. A., Taylor A. J. other authors 2002; LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3( 2H )-furanone. Microbiology 148:909–922
    [Google Scholar]
  41. Xavier K. B., Bassler B. L. 2003; LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol 6:191–197 [CrossRef]
    [Google Scholar]
  42. Yang X., Goldberg M. S., Popova T. G., Schoeler G. B., Wikel S. K., Hagman K. E., Norgard M. V. 2000; Interdependence of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol Microbiol 37:1470–1479 [CrossRef]
    [Google Scholar]
  43. Yang X. F., Alani S. M., Norgard M. V. 2003; The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:11001–11006 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004424-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004424-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error