1887

Abstract

is a Gram-negative enteric pathogen that causes disease in both humans and animals. Recently, a type III secretion system (T3SS) has been found to contribute to pathogenesis. EseB, EseC and EseD were shown to be secreted by the T3SS and to be the major components of the extracellular proteins (ECPs). Based on sequence similarity, they have been proposed to function as the ‘translocon’ of the T3SS needle structure. In this study, it was shown that EseB, EseC and EseD formed a protein complex after secretion, which is consistent with their possible roles as translocon components. The secretion of EseB and EseD was dependent on EscC (previously named Orf2). EscC has the characteristics of a chaperone; it is a small protein (13 kDa), located next to the translocators in the T3SS gene cluster, and has a coiled-coil structure at the N-terminal region as predicted by . An in-frame deletion of abolished the secretion of EseB and EseD, and complementation of Δ restored the export of EseB and EseD into the culture supernatant. Further studies showed that EscC is not a secreted protein and is located on the membrane and in the cytoplasm. Mutation of did not affect the transcription of but reduced the amount of EseB as measured by using an EseB–LacZ fusion protein in . Co-purification studies demonstrated that EscC formed complexes with EseB and EseD. The results suggest that EscC functions as a T3SS chaperone for the putative translocon components EseB and EseD in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004952-0
2007-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1953.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004952-0&mimeType=html&fmt=ahah

References

  1. Akeda Y., Galan J. E. 2005; Chaperone release and unfolding of substrates in type III secretion. Nature 437:911–915 [CrossRef]
    [Google Scholar]
  2. Auvray F., Thomas J., Fraser G. M., Hughes C. 2001; Flagellin polymerization control by a cytosolic export chaperone. J Mol Biol 308:221–229 [CrossRef]
    [Google Scholar]
  3. Banks A. S. 1992; A puncture wound complicated by infection with Edwardsiella tarda. J Am Podiatr Med Assoc 82:529–531 [CrossRef]
    [Google Scholar]
  4. Bennett J. C., Hughes C. 2000; From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol 8:202–204 [CrossRef]
    [Google Scholar]
  5. Büttner D., Bonas U. 2002; Port of entry – the type III secretion translocon. Trends Microbiol 10:186–192 [CrossRef]
    [Google Scholar]
  6. Clarridge J. E., Musher D. M., Fainstein V., Wallace R. J. Jr 1980; Extraintestinal human infection caused by Edwardsiella tarda. J Clin Microbiol 11:511–514
    [Google Scholar]
  7. Cornelis G. R., Van Gijsegem F. 2000; Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774 [CrossRef]
    [Google Scholar]
  8. Creasey E. A., Friedberg D., Shaw R. K., Umanski T., Knutton S., Rosenshine I., Frankel G. 2003; CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. Microbiology 149:3639–3647 [CrossRef]
    [Google Scholar]
  9. Darwin K. H., Miller V. L. 2000; The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes. Mol Microbiol 35:949–959 [CrossRef]
    [Google Scholar]
  10. Darwin K. H., Miller V. L. 2001; Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J 20:1850–1862 [CrossRef]
    [Google Scholar]
  11. Edwards R. A., Keller L. H., Schifferli D. M. 1998; Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157 [CrossRef]
    [Google Scholar]
  12. Elliott S. J., Hutcheson S. W., Dubois M. S., Mellies J. L., Wainwright L. A., Batchelor M., Frankel G., Knutton S., Kaper J. B. 1999; Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol Microbiol 33:1176–1189
    [Google Scholar]
  13. Fraser G. M., Bennett J. C., Hughes C. 1999; Substrate-specific binding of hook-associated protein by FlgN and FliT, putative chaperones for flagellum assembly. Mol Microbiol 32:569–580 [CrossRef]
    [Google Scholar]
  14. Hartland E. L., Daniell S. J., Delahay R. M., Neves B. C., Wallis T., Shaw R. K., Hale C., Knutton S., Frankel G. 2000; The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions. Mol Microbiol 35:1483–1492
    [Google Scholar]
  15. Hirono I., Tange N., Aoki T. 1997; Iron regulated hemolysin gene from Edwardsiella tarda. Mol Microbiol 24:851–856 [CrossRef]
    [Google Scholar]
  16. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [CrossRef]
    [Google Scholar]
  17. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  18. Ide T., Laarmann S., Greune L., Schillers H., Oberleithner H., Schmidt M. A. 2001; Characterization of translocation pores inserted into plasma membranes by type III-secreted Esp proteins of enteropathogenic Escherichia coli. Cell Microbiol 3:669–679 [CrossRef]
    [Google Scholar]
  19. Janda J. M., Abott S. L., Kroshe-Bystrom S., Cheng W. K. W., Powers C., Kokka R. P., Tamura K. 1991; Pathogenic properties of Edwardsiella species. J Clin Microbiol 29:1997–2001
    [Google Scholar]
  20. Kalogeraki V. S., Winans S. C. 1997; Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188:69–75 [CrossRef]
    [Google Scholar]
  21. Lee S. H., Galan J. E. 2004; Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51:483–495 [CrossRef]
    [Google Scholar]
  22. Ling S. H. M., Wang X. H., Xie L., Lim T. M., Leung K. Y. 2000; Use of green fluorescent protein (GFP) to track the invasive pathways of Edwardsiella tarda in the in vivo and in vitro fish models. Microbiology 146:7–19
    [Google Scholar]
  23. Ling S. H. M., Wang X. H., Lim T. M., Leung K. Y. 2001; Green fluorescent protein-tagged Edwardsiella tarda reveals portal of entry in fish. FEMS Microbiol Lett 194:239–243 [CrossRef]
    [Google Scholar]
  24. Lupas A. 1996; Coiled-coils: new structures and new functions. Trends Biochem Sci 21:375–382 [CrossRef]
    [Google Scholar]
  25. Marlovits T. C., Marlovits T. C., Kubori T., Sukhan A., Thomas D. R., Galan J. E., Unger V. M. 2004; Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–1042 [CrossRef]
    [Google Scholar]
  26. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Neyt C., Cornelis G. R. 1999; Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol Microbiol 31:143–156 [CrossRef]
    [Google Scholar]
  28. Nikolaus T., Deiwick J., Rappl C., Freeman J. A., Schroder W., Miller S. I., Hensel M. 2001; SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island 2 and function as a transolocon. J Bacteriol 183:6036–6045 [CrossRef]
    [Google Scholar]
  29. Osiri M., Tantawichien T., Deesomchock U. 1997; Edwardsiella tarda bacteremia and septic arthritis in a patient with diabetes mellitus. Southeast Asian J Trop Med Public Health 28:669–672
    [Google Scholar]
  30. Page A. L., Parsot C. 2002; Chaperones of the type III secretion pathway: jacks of all trades. Mol Microbiol 46:1–11 [CrossRef]
    [Google Scholar]
  31. Pallen M. J., Dougan G., Frankel G. 1997; Coiled-coil domains in proteins secreted by type III secretion systems. Mol Microbiol 25:423–425 [CrossRef]
    [Google Scholar]
  32. Parsot C., Hamiaux C., Page A. L. 2003; The various and varying roles of specific chaperones in type III secretion systems. Curr Opin Microbiol 6:7–13 [CrossRef]
    [Google Scholar]
  33. Plumb J. A. 1993; Edwardsiella septicaemia. In Bacterial Diseases of Fish pp 61–79 Edited by Inglis V., Roberts R. J., Bromage N. R. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  34. Rubirés X., Saigí F., Piqué N., Climent N., Merino S., Albertí S., Tomas J. M., Regue M. 1997; A gene ( wbbL ) from Serratia marcescens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives. J Bacteriol 179:7581–7586
    [Google Scholar]
  35. Schlosser-Silverman E., Elgrably-Weiss M., Rosenshine I., Kohen R., Altuvia S. 2000; Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J Bacteriol 182:5225–5230 [CrossRef]
    [Google Scholar]
  36. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  37. Slaven E. M., Lopez F. A., Hart S. M., Sanders C. V. 2001; Myonecrosis caused by Edwardsiella tarda : a case report and case series of extraintestinal E. tarda infections. Clin Infect Dis 32:1430–1433 [CrossRef]
    [Google Scholar]
  38. Srinivasa Rao P. S., Lim T. M., Leung K. Y. 2001; Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates. Infect Immun 69:5689–5697 [CrossRef]
    [Google Scholar]
  39. Srinivasa Rao P. S., Lim T. M., Leung K. Y. 2003a; Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect Immun 71:1343–1351 [CrossRef]
    [Google Scholar]
  40. Srinivasa Rao P. S., Yamada Y., Leung K. Y. 2003b; A major catalase (KatB) that is required for H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology 149:2635–2644 [CrossRef]
    [Google Scholar]
  41. Srinivasa Rao P. S., Yamada Y., Tan Y. P., Leung K. Y. 2004; Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol 53:573–586 [CrossRef]
    [Google Scholar]
  42. Tan Y. P., Lin Q., Wang X. H., Joshi S., Hew C. L., Leung K. Y. 2002; Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. Infect Immun 70:6475–6480 [CrossRef]
    [Google Scholar]
  43. Tan Y. P., Zheng J., Tung S. L., Rosenshine I., Leung K. Y. 2005; Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151:2301–2313 [CrossRef]
    [Google Scholar]
  44. Thomas N. A., Deng W., Puente J. L., Frey E. A., Yip C. K., Strynadka N. C., Finlay B. B. 2005; CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol Microbiol 57:1762–1779 [CrossRef]
    [Google Scholar]
  45. Thune R. L., Stanley L. A., Cooper R. K. 1993; Pathogenesis of gram-negative bacterial infections in warm water fish. Annu Rev Fish Dis 3:37–68 [CrossRef]
    [Google Scholar]
  46. Ullah M. A., Arai T. 1983; Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathol 18:65–70 [CrossRef]
    [Google Scholar]
  47. Wainwright L. A., Kaper J. B. 1998; EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol Microbiol 27:1247–1260 [CrossRef]
    [Google Scholar]
  48. Wattiau P., Woestyn S., Cornelis G. R. 1996; Customized secretion chaperones in pathogenic bacteria. Mol Microbiol 20:255–262 [CrossRef]
    [Google Scholar]
  49. Yang C. H., Wang C. K. 1999; Edwardsiella tarda bacteraemia – complicated by acute pancreatitis and pyomyoma. J Infect 38:124–126 [CrossRef]
    [Google Scholar]
  50. Yip C. K., Finlay B. B., Strynadka N. C. 2005; Structural characterization of a type III secretion system filament protein in complex with its chaperone. Nat Struct Mol Biol 12:75–81 [CrossRef]
    [Google Scholar]
  51. Zheng J., Tung S. L., Leung K. Y. 2005; Regulation of a type III and a putative secretion system (EVP) of Edwardsiella tarda by EsrC is under the control of a two-component system EsrA-EsrB. Infect Immun 73:4127–4137 [CrossRef]
    [Google Scholar]
  52. Zurawski D. V., Stein M. A. 2003; SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island 2 translocon. Mol Microbiol 47:1341–1351 [CrossRef]
    [Google Scholar]
  53. Zurawski D. V., Stein M. A. 2004; The SPI2-encoded SseA chaperone has discrete domains required for SseB stabilization and export, and binds within the C-terminus of SseB and SseD. Microbiology 150:2055–2068 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004952-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004952-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error