1887

Abstract

The ALS (gglutinin-ike equence) family includes eight genes ( to , and ) that share a common general organization, consisting of a relatively conserved 5′ domain, a central domain of tandemly repeated sequence units, and a 3′ domain of relatively variable length and sequence. To test the hypothesis that the cell-surface glycoproteins encoded by the ALS genes mediate contact between the fungal cell and host surfaces, a set of mutant strains was systematically constructed, each lacking one of the ALS sequences. Phenotypes of the mutant strains were evaluated, primarily using adhesion assays. is unique within the ALS family due to extensive allelic sequence variation within the 5′ domain that may result in functional differences between proteins encoded by and . Deletion of significantly reduces adhesion to human vascular endothelial cell monolayers. The mutation was complemented by reintegration of a wild-type copy of , but not , suggesting allelic functional differences. Complementation of the mutation with a gene fusion between the 5′ domain of and the tandem repeats and 3′ domain of also restored wild-type adhesion levels. Analysis of the Δ/Δ mutant phenotype in other assays demonstrated no significant difference from a control strain for adhesion to buccal epithelial cells or laminin-coated plastic plates. The Δ/Δ mutant did not show significant differences from the control for adhesion to or destruction of cells in the reconstituted human epithelium (RHE) disease model, or for cell-wall defects, germ-tube formation or biofilm formation in a catheter model. Analysis of allelic frequency in a collection of geographically diverse clinical isolates showed a distinct preference for allelic sequences, within both the 5′ and the 3′ domain of the coding region. These data suggest greater selective pressure to maintain the allele in isolates and imply its greater relative importance in host–pathogen interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005017-0
2007-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2342.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005017-0&mimeType=html&fmt=ahah

References

  1. Blignaut E., Pujol C., Lockhart S., Joly S., Soll D. R. 2002; Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J Clin Microbiol 40:826–836 [CrossRef]
    [Google Scholar]
  2. Boeke J. D., Lacroute F., Fink G. R. 1984; A positive selection for mutants lacking orotidine 5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346 [CrossRef]
    [Google Scholar]
  3. Cheng G., Wozniak K., Wallig M. A., Trupin S. R., Hoyer L. L., Fidel P. L. Jr 2005; Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun 73:1656–1663 [CrossRef]
    [Google Scholar]
  4. Dean N. 1995; Yeast glycosylation mutants are sensitive to aminoglycosides. Proc Natl Acad Sci U S A 92:1287–1291 [CrossRef]
    [Google Scholar]
  5. Elorza M. V., Rico H., Sentandreu R. 1983; Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells. J Gen Microbiol 129:1577–1582
    [Google Scholar]
  6. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728
    [Google Scholar]
  7. Fu Y., Rieg G., Fonzi W. A., Belanger P. H., Filler S. G., Edwards J. E. Jr 1998; Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66:1783–1786
    [Google Scholar]
  8. Gaur N. K., Klotz S. A. 1997; Expression, cloning, and characterization of a Candida albicans gene, ALA1 , that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65:5289–5294
    [Google Scholar]
  9. Gillum A. M., Tsay E. Y., Kirsch D. R. 1984; Isolation of the Candida albicans genes for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198:179–182 [CrossRef]
    [Google Scholar]
  10. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150:267–275 [CrossRef]
    [Google Scholar]
  11. Green C. B., Zhao X., Hoyer L. L. 2005a; Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun 73:1852–1855 [CrossRef]
    [Google Scholar]
  12. Green C. B., Zhao X., Yeater K. M., Hoyer L. L. 2005b; Construction and real-time RT-PCR validation of Candida albicans P ALS -GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151:1051–1060 [CrossRef]
    [Google Scholar]
  13. Green C. B., Marretta S. M., Cheng G., Faddoul F. F., Ehrhart E. J., Hoyer L. L. 2006; RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Med Mycol 44:103–111 [CrossRef]
    [Google Scholar]
  14. Herrero A. B., Uccelletti D., Hirschberg C. B., Dominguez A., Abeijon C. 2002; The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. Eukaryot Cell 1:420–431 [CrossRef]
    [Google Scholar]
  15. Hoyer L. L. 2001; The ALS gene family of Candida albicans. Trends Microbiol 9:176–180 [CrossRef]
    [Google Scholar]
  16. Hoyer L. L., Hecht J. E. 2001; The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18:49–60 [CrossRef]
    [Google Scholar]
  17. Hoyer L. L., Scherer S., Shatzman A. R., Livi G. P. 1995; Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 15:39–54 [CrossRef]
    [Google Scholar]
  18. Hoyer L. L., Payne T. L., Bell M., Myers A. M., Scherer S. 1998; Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 33:451–459 [CrossRef]
    [Google Scholar]
  19. Kapteyn J. C., Hoyer L. L., Hecht J. E., Muller W. H., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611
    [Google Scholar]
  20. Kopecka M., Gabriel M. 1992; The influence of Congo red on the cell wall and (1–3)- β -d-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158:115–126 [CrossRef]
    [Google Scholar]
  21. Kuhn D. M., Chandra J., Mukherjee P. K., Ghannoum M. A. 2002; Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888 [CrossRef]
    [Google Scholar]
  22. Lee K. L., Buckley H. R., Campbell C. C. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans. Sabouraudia 13:148–153 [CrossRef]
    [Google Scholar]
  23. Loza L., Fu Y., Ibrahim A. S., Sheppard D. C., Filler S. G., Edwards J. E. Jr 2004; Functional analysis of the Candida albicans ALS1 gene product. Yeast 21:473–482 [CrossRef]
    [Google Scholar]
  24. Machi K., Azuma M., Igarashi K., Matsumoto T., Fukuda H., Kondo A., Ooshima H. 2004; Rot1p of Saccharomyces cerevisiae is a putative membrane protein required for normal levels of the cell wall 1,6- β -glucan. Microbiology 150:3163–3173 [CrossRef]
    [Google Scholar]
  25. Oh S.-H., Cheng G., Nuessen J. A., Jajko R., Yeater K. M., Zhao X., Pujol C., Soll D. R., Hoyer L. L. 2005; Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673–681 [CrossRef]
    [Google Scholar]
  26. Porta A., Ramon A. M., Fonzi W. A. 1999; PRR1 , a homolog of Aspergillus nidulans palF , controls pH-dependent gene expression and filamentation in Candida albicans. J Bacteriol 181:7516–7523
    [Google Scholar]
  27. Pujol C., Joly S., Lockhart S. R., Noel S., Tibayrenc M., Soll D. R. 1997; Parity among the randomly amplified polymorphic DNA method, multilocus enzyme electrophoresis, and Southern blot hybridization with the moderately repetitive DNA probe Ca3 for fingerprinting Candida albicans. J Clin Microbiol 35:2348–2358
    [Google Scholar]
  28. Pujol C., Pfaller M. A., Soll D. R. 2002; Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J Clin Microbiol 40:2729–2740 [CrossRef]
    [Google Scholar]
  29. Rauceo J. M., De Armond R., Otoo H., Kahn P. C., Klotz S. A., Gaur N. K., Lipke P. N. 2006; Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot Cell 5:1664–1673 [CrossRef]
    [Google Scholar]
  30. Santos M. A., Tuite M. F. 1995; The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res 23:1481–1486 [CrossRef]
    [Google Scholar]
  31. Sheppard D. C., Yeaman M. R., Welch W. H., Phan Q. T., Fu Y., Ibrahim A. S., Filler S. G., Zhang M., Waring A. J., Edwards J. E. Jr 2004; Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489 [CrossRef]
    [Google Scholar]
  32. Wilson R. B., Davis D., Enloe B. M., Mitchell A. P. 2000; A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruption. Yeast 16:65–70 [CrossRef]
    [Google Scholar]
  33. Zhang N., Harrex A. L., Holland B. R., Fenton L. E., Cannon R. D., Schmid J. 2003; Sixty alleles of the ALS7 open reading frame in Candida albicans : ALS7 is a hypermutable contingency locus. Genome Res 13:2005–2017 [CrossRef]
    [Google Scholar]
  34. Zhao X., Pujol C., Soll D. R., Hoyer L. L. 2003; Allelic variation in the contiguous loci encoding Candida albicans ALS5,ALS1 and ALS9. Microbiology 149:2947–2960 [CrossRef]
    [Google Scholar]
  35. Zhao X., Oh S.-H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J. P., Hoyer L. L. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparison between Als3p and Als1p. Microbiology 150:2415–2428 [CrossRef]
    [Google Scholar]
  36. Zhao X., Oh S.-H., Yeater K. M., Hoyer L. L. 2005; Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151:1619–1630 [CrossRef]
    [Google Scholar]
  37. Zhao X., Daniels K., Green C. B., Oh S.-H., Soll D. R., Hoyer L. L. 2006; Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152:2287–2299 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005017-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005017-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error