1887

Abstract

SeqA protein, a main negative regulator of the replication initiation of the chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in mutants the copy number of another replicon, the plasmid, is decreased, and that the activity of the promoter (whose function is required for stimulation of ) is lower than that in the wild-type host. Here, SeqA-mediated regulation of phage and plasmid replicons was investigated in more detail. No significant influence of SeqA on -dependent DNA replication was observed, indicating that a direct regulation of DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled DNA was monitored after phage infection of host cells, strongly suggested the early appearance of replication intermediates and preferential rolling-circle replication of phage DNA in mutants. The directionality of plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable replication complex was decreased in the mutant relative to the wild-type host, but a stable fraction of the O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of gene function on heritable complex- and transcription-dependent DNA replication, the efficiency of plasmid replication in amino acid-starved mutants was measured. Under these conditions, dysfunction resulted in impairment of plasmid replication. These results indicate that unlike , SeqA modulates DNA replication indirectly, most probably by influencing the stability of the replication complex and the transcriptional activation of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005546-0
2007-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1653.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005546-0&mimeType=html&fmt=ahah

References

  1. Appleyard R. K. 1954; Segregation of new lysogenic types during growth of a doubly lysogenic strain derived from Escherichia coli K12. Genetics 39:440–452
    [Google Scholar]
  2. Bach T., Krekling M. A., Skarstad K. 2003; Excess SeqA prolongs sequestration of oriC and delays nucleoid segregation and cell division. EMBO J 22:315–323 [CrossRef]
    [Google Scholar]
  3. Barańska S., Gabig M., Konopa G., Herman-Antosiewicz A., Hernandez P., Schvartzman J. B., Helinski D. R., Węgrzyn A., Węgrzyn G. 2001; Regulation of the switch from early to late bacteriophage λ DNA replication mode. Microbiology 147:535–547
    [Google Scholar]
  4. Boyd A. C., Sherratt D. J. 1995; The pCLIP plasmids: versatile cloning vectors based on the bacteriophage λ origin of replication. Gene 153:57–62 [CrossRef]
    [Google Scholar]
  5. Boye E., Stokke T., Kleckner N., Skarstad K. 1996; Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl Acad Sci U S A 93:12206–12211 [CrossRef]
    [Google Scholar]
  6. Brendler T., Austin S. 1999; Binding of SeqA protein to DNA requires interaction between two or more complexes bound to separate hemimethylated GATC sequences. EMBO J 18:2304–2310 [CrossRef]
    [Google Scholar]
  7. Brendler T., Abeles A., Austin S. 1995; A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene. EMBO J 14:4083–4090
    [Google Scholar]
  8. Burkardt H., Lurz R. 1984; Electron microscopy. In Advanced Molecular Genetics pp 281–313 Edited by Puhler A., Timmis K. N. Berlin, Heidelberg: Springer Verlag;
    [Google Scholar]
  9. Duncker B. P., Shimada K., Tsai-Pflugfelder M., Pasero P., Gasser S. M. 2002; An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proc Natl Acad Sci U S A 99:16087–16092 [CrossRef]
    [Google Scholar]
  10. Fossum S., Soreide S., Skarstad K. 2003; Lack of SeqA focus formation, specific DNA binding and proper protein multimerization in the Escherichia coli sequestration mutant seqA2. Mol Microbiol 47:619–632 [CrossRef]
    [Google Scholar]
  11. Fujikawa N., Kurumizaka H., Yamazoe M., Hiraga S., Yokoyama S. 2003; Identification of functional domains of the Escherichia coli SeqA protein. Biochem Biophys Res Commun 300:699–705 [CrossRef]
    [Google Scholar]
  12. Fujikawa N., Kurumizaka H., Nureki O., Tanaka Y., Yamazoe M., Hiraga S., Yokoyama S. 2004; Structural and biochemical analyses of hemimethylated DNA binding by the SeqA protein. Nucleic Acids Res 32:82–92 [CrossRef]
    [Google Scholar]
  13. Fuller R. S., Kaguni J. M., Kornberg A. 1981; Enzymatic replication of the origin of the Escherichia coli chromosome. Proc Natl Acad Sci U S A 78:7370–7374 [CrossRef]
    [Google Scholar]
  14. Glinkowska M., Konopa G., Weigel C., Seitz H., Messer W., Węgrzyn A., Herman-Antosiewicz A., Węgrzyn G. 2001; The double mechanism of incompatibility between λ plasmids and Escherichia coli dnaA (ts) host cells. Microbiology 147:1923–1928
    [Google Scholar]
  15. Glinkowska M., Majka J., Messer W., Węgrzyn G. 2003; The mechanism of regulation of bacteriophage λ p R promoter activity by Escherichia coli DnaA protein. J Biol Chem 278:22250–22256 [CrossRef]
    [Google Scholar]
  16. Goldberg A. R., Howe M. 1969; New mutations in the S cistron of bacteriophage λ affecting host cell lysis. Virology 38:200–202 [CrossRef]
    [Google Scholar]
  17. Guarne A., Zhao Q., Ghirlando R., Yang W. 2002; Insights into negative modulation of E. coli replication initiation from the structure of SeqA-hemimethylated DNA complex. Nat Struct Biol 9:839–843
    [Google Scholar]
  18. Guarne A., Brendler T., Zhao Q., Ghirlando R., Austin S., Yang W. 2005; Crystal structure of a SeqA-N filament: implications for DNA replication and chromosome organization. EMBO J 24:1502–1511 [CrossRef]
    [Google Scholar]
  19. Han J. S., Kang S., Lee H., Kim H. K., Hwang D. S. 2003; Sequential binding of SeqA to paired hemi-methylated GATC sequences mediates formation of higher order complexes. J Biol Chem 278:34983–34989 [CrossRef]
    [Google Scholar]
  20. Han J. S., Kang S., Kim S. H., Ko M. J., Hwang D. S. 2004; Binding of SeqA protein to hemi-methylated GATC sequences enhances their interaction and aggregation properties. J Biol Chem 279:30236–30243 [CrossRef]
    [Google Scholar]
  21. Hardy C. D., Cozzarelli N. R. 2005; A genetic selection for supercoiling mutants of Escherichia coli reveals proteins implicated in chromosome structure. Mol Microbiol 57:1636–1652 [CrossRef]
    [Google Scholar]
  22. Herman-Antosiewicz A., Taylor K., Węgrzyn A., Węgrzyn G. 1998a; DnaA-mediated regulation of phage λ -derived replicons in the absence of p R and Cro function. Virology 249:98–107 [CrossRef]
    [Google Scholar]
  23. Herman-Antosiewicz A., Taylor K., Śrutkowska S., Węgrzyn G. 1998b; Replication and maintenance of λ plasmids devoid of the Cro repressor autoregulatory loop in Escherichia coli. Plasmid 40:113–125 [CrossRef]
    [Google Scholar]
  24. Hiraga S., Ichinose C., Niki H., Yamazoe M. 1998; Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complexes in E. coli. Mol Cell 1:381–387 [CrossRef]
    [Google Scholar]
  25. Jensen K. F. 1993; The Escherichia coli ‘wild types’ W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407
    [Google Scholar]
  26. Kang S., Lee H., Han J. S., Hwang D. S. 1999; Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J Biol Chem 274:11463–11468 [CrossRef]
    [Google Scholar]
  27. Klungsoyr H. K., Skarstad K. 2004; Positive supercoiling is generated in the presence of Escherichia coli SeqA protein. Mol Microbiol 54:123–131 [CrossRef]
    [Google Scholar]
  28. Konieczny I., Marszałek J. 1995; The requirement for molecular chaperones in λ DNA replication is reduced by the mutation π in λP gene, which weakens the interaction between λ P protein and DnaB helicase. J Biol Chem 270:9792–9799 [CrossRef]
    [Google Scholar]
  29. Kornberg A., Baker T. A. 1992 DNA Replication New York: W. H. Freeman;
    [Google Scholar]
  30. Kur J., Gorska I., Taylor K. 1987; Escherichia coli dnaA initiation function is required for replication of plasmids derived from coliphage lambda. J Mol Biol 198:203–210 [CrossRef]
    [Google Scholar]
  31. Lee H., Kang S., Bae S. H., Choi B. S., Hwang D. S. 2001; SeqA protein aggregation is necessary for SeqA function. J Biol Chem 276:34600–34606 [CrossRef]
    [Google Scholar]
  32. Li C. J., DePamphilis M. L. 2002; Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol Cell Biol 22:105–116 [CrossRef]
    [Google Scholar]
  33. Lobner-Olesen A., Marinus M. G., Hansen F. G. 2003; Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc Natl Acad Sci U S A 100:4672–4677 [CrossRef]
    [Google Scholar]
  34. Lu M., Campbell J. L., Boye E., Kleckner N. 1994; SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413–426 [CrossRef]
    [Google Scholar]
  35. Messer W. 2002; The bacterial initiator DnaA. DnaA and oriC , the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 26:355–374
    [Google Scholar]
  36. Odsbu I., Klungsoyr H. K., Fossum S., Skarstad K. 2005; Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells 10:1039–1049 [CrossRef]
    [Google Scholar]
  37. Polissi A., Goffin L., Georgopoulos C. 1995; The Escherichia coli heat shock response and bacteriophage lambda development. FEMS Microbiol Rev 17:159–169
    [Google Scholar]
  38. Potrykus K., Barańska S., Węgrzyn A., Węgrzyn G. 2002; Composition of the λ plasmid heritable replication complex. Biochem J 364:857–862 [CrossRef]
    [Google Scholar]
  39. Rodionov O., Yarmolinsky M. 2004; Plasmid partitioning and the spreading of P1 partition protein ParB. Mol Microbiol 52:1215–1223 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Skarstad K., Lueder G., Lurz R., Speck C., Messer W. 2000; The Escherichia coli SeqA protein binds specifically and cooperatively to two sites in hemimethylated and fully methylated oriC. Mol Microbiol 36:1319–1326
    [Google Scholar]
  42. Skarstad K., Torheim N., Wold S., Lurz R., Messer W., Fossum S., Bach T. 2001; The Escherichia coli SeqA protein binds specifically to two sites in fully and hemimethylated oriC and has the capacity to inhibit DNA replication and affect chromosome topology. Biochimie 83:49–51 [CrossRef]
    [Google Scholar]
  43. Slater S., Wold S., Lu M., Boye E., Skarstad K., Kleckner N. 1995; E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82:927–936 [CrossRef]
    [Google Scholar]
  44. Słomińska M., Węgrzyn A., Konopa G., Skarstad K., Węgrzyn G. 2001; SeqA, the Escherichia coli origin sequestration protein, is also a specific transcription factor. Mol Microbiol 40:1371–1379 [CrossRef]
    [Google Scholar]
  45. Słomińska M., Konopa G., Ostrowska J., Kędzierska B., Węgrzyn G., Węgrzyn A. 2003a; SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator. Mol Microbiol 47:1669–1679 [CrossRef]
    [Google Scholar]
  46. Słomińska M., Konopa G., Barańska S., Węgrzyn G., Węgrzyn A. 2003b; Interplay between DnaA and SeqA proteins during regulation of bacteriophage λ p R promoter activity. J Mol Biol 329:59–68 [CrossRef]
    [Google Scholar]
  47. Słomińska M., Wahl A., Skarstad K., Węgrzyn G. 2003c; The degradation of mutant initiator protein DnaA204 by proteases ClpP, ClpQ and Lon is prevented when DNA is SeqA-free. Biochem J 370:867–871 [CrossRef]
    [Google Scholar]
  48. Śrutkowska S., Konopa G., Węgrzyn G. 1998; A method for isolation of plasmid DNA replication intermediates from unsynchronized bacterial cultures for electron microscopy analysis. Acta Biochim Pol 45:233–240
    [Google Scholar]
  49. Śrutkowska S., Caspi R., Gabig M., Węgrzyn G. 1999; Detection of DNA replication intermediates after two-dimensional agarose gel electrophoresis using a fluorescein-labeled probe. Anal Biochem 269:221–222 [CrossRef]
    [Google Scholar]
  50. Szalewska-Pałasz A., Węgrzyn A., Herman A., Węgrzyn G. 1994; The mechanism of the stringent control of λ plasmid DNA replication. EMBO J 13:5779–5785
    [Google Scholar]
  51. Szalewska-Pałasz A., Węgrzyn A., Błaszczak A., Taylor K., Węgrzyn G. 1998; DnaA-stimulated transcriptional activation of oriλ : Escherichia coli RNA polymerase β subunit as a transcriptional activator contact site. Proc Natl Acad Sci U S A 95:4241–4246 [CrossRef]
    [Google Scholar]
  52. Tabor S., Richardson C. C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [CrossRef]
    [Google Scholar]
  53. Taghbalout A., Landoulsi A., Kern R., Yamazoe M., Hiraga S., Holland B., Kohiyama M., Malki A. 2000; Competition between the replication initiator DnaA and the sequestration factor SeqA for binding to the hemimethylated chromosomal origin of E. coli in vitro. Genes Cells 5:873–884 [CrossRef]
    [Google Scholar]
  54. Taylor K., Węgrzyn G. 1995; Replication of coliphage lambda DNA. FEMS Microbiol Rev 17:109–119 [CrossRef]
    [Google Scholar]
  55. Torheim N. K., Skarstad K. 1999; Escherichia coli SeqA protein affects DNA topology and inhibits open complex formation at oriC. EMBO J 18:4882–4888 [CrossRef]
    [Google Scholar]
  56. Torheim N. K., Boye E., Lobner-Olesen A., Stokke T., Skarstad K. 2000; The Escherichia coli SeqA protein destabilizes mutant DnaA204 protein. Mol Microbiol 37:629–638
    [Google Scholar]
  57. Viguera E., Hernandez P., Krimer D. B., Boistov A. S., Lurz R., Alonso J. C., Schvartzman J. B. 1996; The ColE1 unidirectional origin acts as a polar replication fork pausing site. J Biol Chem 271:22414–22421 [CrossRef]
    [Google Scholar]
  58. Viguera E., Krimer D. B., Trelles O., Schvartzman J. B., Rodríguez A., Hernández P. 1998; A computer model for the analysis of DNA replication intermediates by two-dimensional (2D) agarose gel electrophoresis. Gene 217:41–49 [CrossRef]
    [Google Scholar]
  59. Vinga I., Sao-Jose C., Tavares P., Santos M. A. 2006; Bacteriophage entry in the host cell. In Modern Bacteriophage Biology and Biotechnology pp 163–203 Edited by Węgrzyn G. Kerala: Research Signpost;
    [Google Scholar]
  60. von Freiesleben U., Rasmussen K. V., Schaechter M. 1994; SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol Microbiol 14:763–772 [CrossRef]
    [Google Scholar]
  61. Węgrzyn A. 2006; DnaA and SeqA proteins of Escherichia coli as regulators of bacteriophage λ development. In Modern Bacteriophage Biology and Biotechnology pp 79–101 Edited by Węgrzyn G. Kerala: Research Signpost;
    [Google Scholar]
  62. Węgrzyn G., Taylor K. 1992; Inheritance of the replication complex by one of two daughter copies during λ plasmid replication in Escherichia coli. J Mol Biol 226:681–688 [CrossRef]
    [Google Scholar]
  63. Węgrzyn A., Węgrzyn G. 2000; Formation and stability of bacteriophage λ replication complexes in UV-irradiated Escherichia coli. Curr Microbiol 41:157–160 [CrossRef]
    [Google Scholar]
  64. Węgrzyn G., Węgrzyn A. 2002; Regulation of bacteriophage λ DNA replication. Curr Top Virol 2:187–194
    [Google Scholar]
  65. Węgrzyn G., Węgrzyn A. 2005; Genetic switches during bacteriophage lambda development. Prog Nucleic Acid Res Mol Biol 79:1–48
    [Google Scholar]
  66. Węgrzyn G., Pawłowicz A., Taylor K. 1992; Stability of coliphage λ DNA replication initiator, the λ O protein. J Mol Biol 226:675–680 [CrossRef]
    [Google Scholar]
  67. Węgrzyn A., Węgrzyn G., Taylor K. 1995a; Protection of coliphage λ O initiator protein from proteolysis in the assembly of the replication complex in vivo. Virology 207:179–184 [CrossRef]
    [Google Scholar]
  68. Węgrzyn G., Węgrzyn A., Konieczny I., Bielawski K., Konopa G., Obuchowski M., Helinski D. R., Taylor K. 1995b; Involvement of the host initiator function dnaA in the replication of coliphage λ. Genetics 139:1469–1481
    [Google Scholar]
  69. Węgrzyn A., Węgrzyn G., Herman A., Taylor K. 1996a; Protein inheritance: λ plasmid replication perpetuated by the heritable replication complex. Genes Cells 1:953–963 [CrossRef]
    [Google Scholar]
  70. Węgrzyn A., Węgrzyn G., Taylor K. 1996b; Disassembly of the coliphage λ replication complex due to heat shock induction of the groE operon. Virology 217:594–597 [CrossRef]
    [Google Scholar]
  71. Węgrzyn A., Herman-Antosiewicz A., Taylor K., Węgrzyn G. 1998; Molecular mechanism of heat shock-provoked disassembly of the coliphage λ replication complex. J Bacteriol 180:2475–2483
    [Google Scholar]
  72. Węgrzyn A., Wróbel B., Węgrzyn G. 1999; Altered biological properties of cell membranes in Escherichia coli dnaA and seqA mutants. Mol Gen Genet 261:762–769 [CrossRef]
    [Google Scholar]
  73. Weitao T., Nordstrom K., Dasgupta S. 1999; Mutual suppression of mukB and seqA phenotypes might arise from their opposing influences on the Escherichia coli nucleoid structure. Mol Microbiol 34:157–168 [CrossRef]
    [Google Scholar]
  74. Wold M. S., Mallory J. B., Roberts J. D., LeBowitz J. H., McMacken R. 1982; Initiation of bacteriophage λ DNA replication in vitro with purified λ replication proteins. Proc Natl Acad Sci U S A 79:6176–6180 [CrossRef]
    [Google Scholar]
  75. Wold S., Boye E., Slater S., Kleckner N., Skarstad K. 1998; Effects of purified SeqA protein on oriC -dependent DNA replication in vitro. EMBO J 17:4158–4165 [CrossRef]
    [Google Scholar]
  76. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. 1991; Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990
    [Google Scholar]
  77. Żylicz M., Gorska I., Taylor K., Georgopoulos C. 1984; Bacteriophage λ replication proteins: formation of a mixed oligomer and binding to the origin of λ DNA. Mol Gen Genet 196:401–406 [CrossRef]
    [Google Scholar]
  78. Żylicz M., Liberek K., Wawrzynów A., Georgopoulos C. 1998; Formation of the preprimosome protects λ O from RNA transcription-dependent proteolysis by ClpP/ClpX. Proc Natl Acad Sci U S A 95:15259–15263 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005546-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005546-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error