1887

Abstract

Flagellar arrangement is a highly conserved feature within bacterial species. However, only a few genes regulating cell flagellation have been described in polar flagellate bacteria. This report demonstrates that the arrangement of flagella in the peritrichous flagellate is controlled by . Disruption of in led to a reduction in the number of flagella from 10–12 to 1–3 filaments per cell in the insertion mutant MP06. Moreover, compared to the parental strain, MP06 exhibited: (i) shorter smooth swimming phases, causing reduced swimming motility but not affecting chemotaxis; (ii) complete inhibition of swarming motility, as differentiated swarm cells were never detected; (iii) an increased amount of extracellular proteins; and (iv) differential export of virulence determinants, such as haemolysin BL (HBL), phosphatidylcholine-preferring phospholipase C (PC-PLC) and non-haemolytic enterotoxin (NHE). Introduction of a plasmid harbouring (pDG) into MP06 completely restored the wild-type phenotype in the complemented strain MP07. was found to constitute a monocistronic transcriptional unit and its overexpression did not produce abnormal features in the wild-type background. Characterization of a mutant (MP05) carrying a partial deletion indicated that the last C-terminal domain of FlhF is involved in protein export while not required for flagellar arrangement and motility behaviour. Taken together, these data suggest that FlhF is a promising candidate for connecting diverse cellular functions, such as flagellar arrangement, motility behaviour, pattern of protein secretion and virulence phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005553-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2541.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005553-0&mimeType=html&fmt=ahah

References

  1. Aizawa S. I., Kubori T. 1998; Bacterial flagellation and cell division. Genes Cells 3:625–634
    [Google Scholar]
  2. Allison C., Hughes C. 1991; Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75:403–422
    [Google Scholar]
  3. Beecher D. J., Wong A. C. L. 1994; Identification of hemolysin BL-producing Bacillus cereus isolates by a discontinuous hemolytic pattern in blood agar. Appl Environ Microbiol 60:1646–1651
    [Google Scholar]
  4. Bouillaut L., Ramarao N., Buisson C., Gilois N., Gohar M., Lereclus D., Nielsen-LeRoux C. 2005; FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Appl Environ Microbiol 71:8903–8910
    [Google Scholar]
  5. Callegan M. C., Novosad B. D., Ramirez R., Ghelardi E., Senesi S. 2006; Role of swarming migration in the pathogenesis of Bacillus endophthalmitis. Invest Ophthalmol Vis Sci 47:4461–4467
    [Google Scholar]
  6. Calvio C., Celandroni F., Ghelardi E., Amati G., Salvetti S., Ceciliani F., Galizzi A., Senesi S. 2005; Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA , a newly identified dicistronic operon. J Bacteriol 187:5356–5366
    [Google Scholar]
  7. Carpenter P. B., Hanlon D. W., Ordal G. W. 1992; flhF , a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol Microbiol 6:2705–2713
    [Google Scholar]
  8. Correa N. E., Peng F., Klose K. E. 2005; Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol 187:6324–6332
    [Google Scholar]
  9. Dasgupta N., Arora S. K., Ramphal R. 2000; fleN , a gene that regulates flagellar number in Pseudomonas aeruginosa . J Bacteriol 182:357–364
    [Google Scholar]
  10. Fraser G. M., Hughes C. 1999; Swarming motility. Curr Opin Microbiol 2:630–635
    [Google Scholar]
  11. Ghelardi E., Celandroni F., Salvetti S., Beecher D. J., Gominet M., Lereclus D., Wong A. C. L., Senesi S. 2002; Requirement of flhA for swarming differentiation, flagellin export, and secretion of virulence-associated proteins in Bacillus thuringiensis . J Bacteriol 184:6424–6433
    [Google Scholar]
  12. Givskov M., Molin S. 1993; Secretion of Serratia liquefaciens phospholipase from Escherichia coli . Mol Microbiol 8:229–242
    [Google Scholar]
  13. Gygi D., Bailey M. J., Allison C., Hughes C. 1995; Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis . Mol Microbiol 15:761–769
    [Google Scholar]
  14. Halic M., Beckmann R. 2005; The signal recognition particle and its interactions during protein targeting. Curr Opin Struct Biol 15:116–125
    [Google Scholar]
  15. Harshey R. M., Matsuyama T. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium : surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635
    [Google Scholar]
  16. Helgason E., Økstad O. A., Caugant D. A., Johansen H. A., Fouet A., Mock M., Hegna I., Kolstø A.-B. 2000; Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis —one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630
    [Google Scholar]
  17. Hendrixson D. R., DiRita V. J. 2003; Transcription of σ 54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702
    [Google Scholar]
  18. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  19. Kearns D. B., Losick R. 2003; Swarming motility in undomesticated Bacillus subtilis . Mol Microbiol 49:581–590
    [Google Scholar]
  20. Kim Y. K., McCarter L. 2000; Analysis of the polar flagellar gene system of Vibrio parahaemolyticus . J Bacteriol 182:3693–3704
    [Google Scholar]
  21. Konkel M. E., Klena J. D., Rivera-Amill V., Monteville M. R., Biswas D., Raphael B., Mickelson J. 2004; Secretion of virulence proteins from Campylobacter jejuni is dependent on functional flagellar export apparatus. J Bacteriol 186:3296–3303
    [Google Scholar]
  22. Kusumoto A., Kamisaka K., Yakushi T., Terashima H., Shinohara A., Homma M. 2006; Regulation of polar flagella number by the flhF and flhG genes in Vibrio alginolyticus . J Biochem (Tokyo 139:113–121
    [Google Scholar]
  23. Lereclus D., Agaisse H., Gominet M., Chaufaux J. 1995; Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spo0A mutant. Biotechnology (N Y) 13:67–71
    [Google Scholar]
  24. McCarter L. 1999; The multiple identities of Vibrio parahaemolyticus . J Mol Microbiol Biotechnol 1:51–57
    [Google Scholar]
  25. Minamino T., Macnab R. M. 1999; Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181:1388–1394
    [Google Scholar]
  26. Murray T. S., Kazmierczak B. I. 2006; FlhF is required for swimming and swarming in Pseudomonas aeruginosa . J Bacteriol 188:6995–7004
    [Google Scholar]
  27. Niehus E., Gressmann H., Ye F., Schlapbach R., Dehio M., Dehio C., Stack A., Meyer T. F., Suerbaum S., Josenhans C. 2004; Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori . Mol Microbiol 52:947–961
    [Google Scholar]
  28. O'Rear J., Alberti L., Harshey R. M. 1992; Mutations that impair swarming motility in Serratia marcescens 274 include but are not limited to those affecting chemotaxis or flagellar function. J Bacteriol 174:6125–6137
    [Google Scholar]
  29. Overbeek R., Larsen N., Walunas T., D'Souza M., Pusch G., Selkov E. Jr, Liolios K., Joukov V., Kaznadzey D. other authors 2003; The ERGO genome analysis and discovery system. Nucleic Acids Res 31:164–171
    [Google Scholar]
  30. Pandza S., Baetens M., Park C. H., Au T., Keyhan M., Matin A. 2000; The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida . Mol Microbiol 36:414–423
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  32. Senesi S., Celandroni F., Salvetti S., Beecher D. J., Wong A. C. L., Ghelardi E. 2002; Swarming motility in Bacillus cereus and characterization of a fliY mutant impaired in swarm cell differentiation. Microbiology 148:1785–1794
    [Google Scholar]
  33. Servant F., Bru C., Carrere S., Courcelle E., Gouzy J., Peyruc D., Kahn D. 2002; ProDom: automated clustering of homologous domains. Brief Bioinform 3:246–251
    [Google Scholar]
  34. Sijbrandi R., Urbanus M. L., ten Hagen-Jongman C. M., Bernstein H. D., Oudega B., Otto B. R., Luirink J. 2003; Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J Biol Chem 278:4654–4659
    [Google Scholar]
  35. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. 1985; Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85
    [Google Scholar]
  36. Stothard P., Van Domselaar G., Shrivastava S., Guo A., O'Neill B., Cruz J., Ellison M., Wishart D. S. 2005; BacMap: an interactive picture atlas of annotated bacterial genomes. Nucleic Acids Res 33:D317–D320
    [Google Scholar]
  37. Stragier P., Bonamy C., Karmazyn-Campelli C. 1988; Processing of a sporulation sigma factor in Bacillus subtilis : how morphological structure could control gene expression. Cell 52:697–704
    [Google Scholar]
  38. Warth A. D. 1980; Heat stability of Bacillus cereus enzymes within spores and in extracts. J Bacteriol 143:27–34
    [Google Scholar]
  39. Young G. M., Schmiel D. H., Miller V. L. 1999a; A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96:6456–6461
    [Google Scholar]
  40. Young G. M., Smith M. J., Minnich S. A., Miller V. L. 1999b; The Yersinia enterocolitica motility master regulatory operon, flhDC , is required for flagellin production, swimming motility and swarming motility. J Bacteriol 181:2823–2833
    [Google Scholar]
  41. Zanen G., Antelmann H., Westers H., Hecker M., van Dijl J. M., Quax W. J. 2004; FlhF, the third signal recognition particle-GTPase of Bacillus subtilis , is dispensable for protein secretion. J Bacteriol 186:5956–5960
    [Google Scholar]
  42. Zanen G., Antelmann H., Meima R., Jongbloed J. D. H., Kolkman M., Hecker M., van Dijl J. M., Quax W. J. 2006; Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis . Proteomics 6:3636–3648
    [Google Scholar]
  43. Zuberi A. R., Ying C., Bischoff D. S., Ordal G. W. 1991; Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis : sequences of the flgB, flgC, flgG, fliE and fliF genes. Gene 101:23–31
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005553-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005553-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error