1887

Abstract

A process of phase variation is described that affects the expression of Bap (iofilm-ssociated rotein) in . Upon subculture of the Bap-positive strain V329 on Congo red agar, spontaneous smooth biofilm-negative colonies appeared at a low frequency (5×10). Northern blot analysis of these variants with a -specific gene probe showed that transcription of the gene did not occur. However, DNA typing, Southern blot hybridization and DNA sequencing did not show any differences between the parent V329 strain and the biofilm-negative variants. The biofilm-negative phenotype reverted to wild-type at a similar frequency upon subculture of Bap-negative variants in liquid media. Experimental infection of ovine mammary glands with Bap-negative variants showed that phase variation occurred , because Bap-expressing, biofilm-positive revertants were isolated from infected mammary glands. The absence of Bap correlated with increased adherence to fibrinogen and fibronectin. It is possible that can detach from a biofilm by switching to a Bap-negative state.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/005744-0
2007-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1702.html?itemId=/content/journal/micro/10.1099/mic.0.2006/005744-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Arrizubieta M. J., Toledo-Arana A., Amorena B., Penades J. R., Lasa I. 2004; Calcium inhibits Bap-dependent multicellular behavior in Staphylococcus aureus. J Bacteriol 186:7490–7498 [CrossRef]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1990 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Baselga R., Albizu I., De La Cruz M., Del Cacho E., Barberan M., Amorena B. 1993; Phase variation of slime production in Staphylococcus aureus : implications in colonization and virulence. Infect Immun 61:4857–4862
    [Google Scholar]
  5. Cheung A. L., Zhang G. 2002; Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front Biosci 7:d1825–d1842 [CrossRef]
    [Google Scholar]
  6. Cheung A. L., Eberhardt K. J., Fischetti V. A. 1994; A method to isolate RNA from Gram-positive bacteria and mycobacteria. Anal Biochem 222:511–514 [CrossRef]
    [Google Scholar]
  7. Cheung A. L., Bayer A. S., Zhang G., Gresham H., Xiong Y. Q. 2004; Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40:1–9 [CrossRef]
    [Google Scholar]
  8. Conlon K. M., Humphreys H., O'Gara J. P. 2004; Inactivations of rsbU and sarA by IS 256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J Bacteriol 186:6208–6219 [CrossRef]
    [Google Scholar]
  9. Cramton S. E., Gerke C., Schnell N. F., Nichols W. W., Gotz F. 1999; The intercellular adhesion ( ica ) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433
    [Google Scholar]
  10. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penades J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [CrossRef]
    [Google Scholar]
  11. Cucarella C., Tormo M. A., Knecht E., Amorena B., Lasa I., Foster T. J., Penades J. R. 2002; Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186 [CrossRef]
    [Google Scholar]
  12. Cucarella C., Tormo M. A., Ubeda C., Trotonda M. P., Monzon M., Peris C., Amorena B., Lasa I., Penades J. R. 2004; Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72:2177–2185 [CrossRef]
    [Google Scholar]
  13. Espinosa-Urgel M., Salido A., Ramos J. L. 2000; Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182:2363–2369 [CrossRef]
    [Google Scholar]
  14. Foster T. J., Höök M. 1998; Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6:484–488 [CrossRef]
    [Google Scholar]
  15. Frenay H. M., Theelen J. P., Schouls L. M., Vandenbroucke-Grauls C. M., Verhoef J., Mooi F. R., van Leeuwen W. J. 1994; Discrimination of epidemic and nonepidemic methicillin-resistant Staphylococcus aureus strains on the basis of protein A gene polymorphism. J Clin Microbiol 32:846–847
    [Google Scholar]
  16. Gotz F. 2002; Staphylococcus and biofilms. Mol Microbiol 43:1367–1378 [CrossRef]
    [Google Scholar]
  17. Hacker J. 1992; Role of fimbrial adhesins in the pathogenesis of Escherichia coli infections. Can J Microbiol 38:720–727 [CrossRef]
    [Google Scholar]
  18. Hartford O., Francois P., Vaudaux P., Foster T. J. 1997; The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol 25:1065–1076 [CrossRef]
    [Google Scholar]
  19. Hookey J. V., Richardson J. F., Cookson B. D. 1998; Molecular typing of Staphylococcus aureus based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J Clin Microbiol 36:1083–1089
    [Google Scholar]
  20. Huber B., Riedel K., Kothe M., Givskov M., Molin S., Eberl L. 2002; Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 46:411–426 [CrossRef]
    [Google Scholar]
  21. Knobloch J. K., Jager S., Horstkotte M. A., Rohde H., Mack D. 2004; RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor σ B by repression of the negative regulator gene icaR. Infect Immun 72:3838–3848 [CrossRef]
    [Google Scholar]
  22. Koreen L., Ramaswamy S. V., Naidich S., Koreen I. V., Graff G. R., Graviss E. A., Kreiswirth B. N. 2005; Comparative sequencing of the serine-aspartate repeat-encoding region of the clumping factor B gene ( clfB ) for resolution within clonal groups of Staphylococcus aureus. J Clin Microbiol 43:3985–3994 [CrossRef]
    [Google Scholar]
  23. Lasa I., Penades J. R. 2006; Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107 [CrossRef]
    [Google Scholar]
  24. Latasa C., Roux A., Toledo-Arana A., Ghigo J. M., Gamazo C., Penades J. R., Lasa I. 2005; BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339 [CrossRef]
    [Google Scholar]
  25. Maira-Litran T., Kropec A., Abeygunawardana C., Joyce J., Goldmann D. A., Pier G. B., Mark G. III 2002; Immunochemical properties of the staphylococcal poly- N -acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440 [CrossRef]
    [Google Scholar]
  26. McDevitt D., Francois P., Vaudaux P., Foster T. J. 1994; Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol Microbiol 11:237–248 [CrossRef]
    [Google Scholar]
  27. Novick R. P. 2003; Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449 [CrossRef]
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Seifert H. S., So M. 1988; Genetic mechanisms of bacterial antigenic variation. Microbiol Rev 52:327–336
    [Google Scholar]
  30. Shankar V., Baghdayan A. S., Huycke M. M., Lindahl G., Gilmore M. S. 1999; Infection-derived Enterococcus faecalis strains are enriched in esp , a gene encoding a novel surface protein. Infect Immun 67:193–200
    [Google Scholar]
  31. Toledo-Arana A., Valle J., Solano C., Arrizubieta M. J., Cucarella C., Lamata M., Amorena B., Leiva J., Penades J. R., Lasa I. 2001; The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Appl Environ Microbiol 67:4538–4545 [CrossRef]
    [Google Scholar]
  32. Tormo M. A., Knecht E., Gotz F., Lasa I., Penades J. R. 2005a; Bap-dependent biofilm formation by pathogenic species of Staphylococcus : evidence of horizontal gene transfer?. Microbiology 151:2465–2475 [CrossRef]
    [Google Scholar]
  33. Tormo M. A., Marti M., Valle J., Manna A. C., Cheung A. L., Lasa I., Penades J. R. 2005b; SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 187:2348–2356 [CrossRef]
    [Google Scholar]
  34. Trotonda M. P., Manna A. C., Cheung A. L., Lasa I., Penades J. R. 2005; SarA positively controls Bap-dependent biofilm formation in Staphylococcus aureus. J Bacteriol 187:5790–5798 [CrossRef]
    [Google Scholar]
  35. Ubeda C., Tormo M. A., Cucarella C., Trotonda P., Foster T. J., Lasa I., Penades J. R. 2003; Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol Microbiol 49:193–210 [CrossRef]
    [Google Scholar]
  36. Valle J., Vergara-Irigaray M., Merino N., Lasa I., Penadés J. R. 2007; σ B regulates IS 256 -mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol 189:2886–2896 [CrossRef]
    [Google Scholar]
  37. Weiser J. N., Markiewicz Z., Tuomanen E. I., Wani J. H. 1996; Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect Immun 64:2240–2245
    [Google Scholar]
  38. Ziebuhr W., Krimmer V., Rachid S., Lossner I., Gotz F., Hacker J. 1999; A novel mechanism of phase variation of virulence in Staphylococcus epidermidis : evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS 256. Mol Microbiol 32:345–356 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/005744-0
Loading
/content/journal/micro/10.1099/mic.0.2006/005744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error