1887

Abstract

A general overview is presented of the changes in the genetic expression along a time curve through the first 20 min after acidification to pH 4.5 of exponentially growing cultures of the food pathogenic strain 50583. A newly developed method for statistical significance testing was used to detect significant gene expression responses. Most responses showed an increase or decrease from time zero to 10 min after acidification, and then generally a stabilization in expression level from 10 to 20 min. Increased urease activity appeared to be an important factor in the acid defence, along with proton excretion by NADH dehydrogenase and macromolecule repair mechanisms. Oxidative-stress responses, such as increased expression of thioredoxin genes and upregulation of pentose phosphate pathway genes to generate more reducing power, were also induced. A general reduction in the expression of genes encoding ribosomal proteins and genes involved in nucleotide synthesis, as well as fatty acid and lipoprotein metabolism, reflected the lowered growth rate after acidification. The pH shock did not appear to trigger major virulence responses or biofilm formation. Metal ion regulation and transport were affected by the acid shock, and production of several cofactors such as molybdopterin was increased. Many of the presented observations could be explained, while some represent still-unknown mechanisms. The patterns of regulation were confirmed by quantitive reverse transcriptase PCR (QRT-PCR). Together, these results showed the main responses of and will be a good starting point for future, more specific, in-depth studies of specific gene responses that occur in conjunction with the acid-stress defence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/005942-0
2007-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2289.html?itemId=/content/journal/micro/10.1099/mic.0.2007/005942-0&mimeType=html&fmt=ahah

References

  1. Arikado E., Ishihara H., Ehara T., Shibata C., Saito H., Kakegawa T., Igarashi K., Kobayashi H. 1999; Enzyme level of enterococcal F1F0-ATPase is regulated by pH at the step of assembly. Eur J Biochem 259:262–268 [CrossRef]
    [Google Scholar]
  2. Armstrong-Buisseret L., Cole M. B., Stewart G. S. A. B. 1995; A homolog to the Escherichia coli alkyl hydroperoxide reductase ahpC is induced by osmotic upshock in Staphylococcus aureus. Microbiology 141:1655–1661 [CrossRef]
    [Google Scholar]
  3. Bauerfeind P., Garner R. M., Mobley H. L. T. 1996; Allelic exchange mutagenesis of nixA in Helicobacter pylori results in reduced nickel transport and urease activity. Infect Immun 64:2877–2880
    [Google Scholar]
  4. Beenken K. E., Dunman P. M., McAleese F., Macapagal D., Murphy E., Projan S. J., Blevins J. S., Smeltzer M. S. 2004; Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684 [CrossRef]
    [Google Scholar]
  5. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L. 2003; The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163 [CrossRef]
    [Google Scholar]
  6. Bunik V. I. 2003; 2-Oxo acid dehydrogenase complexes in redox regulation – role of the lipoate residues and thioredoxin. Eur J Biochem 270:1036–1042 [CrossRef]
    [Google Scholar]
  7. Burne R. A., Chen Y. Y. M. 2000; Bacterial ureases in infectious diseases. Microbes Infect 2:533–542 [CrossRef]
    [Google Scholar]
  8. Chan P. F., Foster S. J. 1998; Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J Bacteriol 180:6232–6241
    [Google Scholar]
  9. Chang W., Toghrol F., Bentley W. E. 2006; Toxicogenomic response of Staphylococcus aureus to peracetic acid. Environ Sci Technol 40:5124–5131 [CrossRef]
    [Google Scholar]
  10. Chastanet A., Derre I., Nair S., Msadek T. 2004; clpB , a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. J Bacteriol 186:1165–1174 [CrossRef]
    [Google Scholar]
  11. Chatterjee I., Becker P., Grundmeier M., Bischoff M., Somerville G. A., Peters G., Sinha B., Harraghy N., Proctor R. A., Herrmann M. 2005; Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. J Bacteriol 187:4488–4496 [CrossRef]
    [Google Scholar]
  12. Chedin F., Kowalczykowski S. C. 2002; A novel family of regulated helicases/nucleases from Gram-positive bacteria: insights into the initiation of DNA recombination. Mol Microbiol 43:823–834 [CrossRef]
    [Google Scholar]
  13. Chen Y. Y. M., Weaver C. A., Mendelsohn D. R., Burne R. A. 1998; Transcriptional regulation of the Streptococcus salivarius 57.I urease operon. J Bacteriol 180:5769–5775
    [Google Scholar]
  14. Clements M. O., Foster S. J. 1999; Stress resistance in Staphylococcus aureus. Trends Microbiol 7:458–462 [CrossRef]
    [Google Scholar]
  15. Clements M. O., Watson S. P., Foster S. J. 1999; Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J Bacteriol 181:3898–3903
    [Google Scholar]
  16. Cohen S. P., Hachler H., Levy S. B. 1993; Genetic and functional analysis of the multiple antibiotic-resistance ( mar ) locus in Escherichia coli. J Bacteriol 175:1484–1492
    [Google Scholar]
  17. Cotter P. D., Hill C. 2003; Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453 [CrossRef]
    [Google Scholar]
  18. Davis G. S., Mobley H. L. T. 2005; Contribution of dppA to urease activity in Helicobacter pylori 26695. Helicobacter 10:416–423 [CrossRef]
    [Google Scholar]
  19. Deora R., Tseng T., Misra T. K. 1997; Alternative transcription factor σ SB of Staphylococcus aureus : characterization and role in transcription of the global regulatory locus sar. J Bacteriol 179:6355–6359
    [Google Scholar]
  20. Epstein W. 2003; The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 75:293–320
    [Google Scholar]
  21. Foster J. W. 2004; Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898 [CrossRef]
    [Google Scholar]
  22. Frees D., Chastanet A., Qazi S., Sorensen K., Hill P., Msadek T., Ingmer H. 2004; Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54:1445–1462 [CrossRef]
    [Google Scholar]
  23. Giachino P., Engelmann S., Bischoff M. 2001; σ B activity depends on RsbU in Staphylococcus aureus. J Bacteriol 183:1843–1852 [CrossRef]
    [Google Scholar]
  24. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. 1990; Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A 87:6181–6185 [CrossRef]
    [Google Scholar]
  25. Hofmann B., Hecht H. J., Flohe L. 2002; Peroxiredoxins. Biol Chem 383:347–364
    [Google Scholar]
  26. Horsburgh M. J., Clements M. O., Crossley H., Ingham E., Foster S. J. 2001; PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69:3744–3754 [CrossRef]
    [Google Scholar]
  27. Kanafani H., Martin S. E. 1985; Catalase and superoxide-dismutase activities in virulent and nonvirulent Staphylococcus aureus isolates. J Clin Microbiol 21:607–610
    [Google Scholar]
  28. Kisker C., Schindelin H., Rees D. C. 1997; Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267 [CrossRef]
    [Google Scholar]
  29. Kobayashi H., Miyamoto T., Hashimoto Y., Kiriki M., Motomatsu A., Honjoh K., Iio M. 2005; Identification of factors involved in recovery of heat-injured Salmonella Enteritidis . J Food Prot 68:932–941
    [Google Scholar]
  30. Kuroda M., Kuroda H., Oshima T., Takeuchi F., Mori H., Hiramatsu K. 2003; Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821
    [Google Scholar]
  31. Langsrud O. 2005; Rotation tests. Stat Comput 15:53–60 [CrossRef]
    [Google Scholar]
  32. Lasken R. S., Kornberg A. 1988; The primosomal protein N′ of Escherichia coli is a DNA helicase. J Biol Chem 263:5512–5518
    [Google Scholar]
  33. Len A. C., Harty D. W. S., Jacques N. A. 2004; Proteome analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:1353–1366 [CrossRef]
    [Google Scholar]
  34. Lowy F. D. 1998; Medical progress – Staphylococcus aureus infections. N Engl J Med 339:520–532 [CrossRef]
    [Google Scholar]
  35. Ma J. F., Hager P. W., Howell M. L., Phibbs P. V., Hassett D. J. 1998; Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat. J Bacteriol 180:1741–1749
    [Google Scholar]
  36. Manna A. C., Bayer M. G., Cheung A. L. 1998; Transcriptional analysis of different promoters in the sar locus in Staphylococcus aureus. J Bacteriol 180:3828–3836
    [Google Scholar]
  37. Maurer L. M., Yohannes E., Bondurant S. S., Radmacher M., Slonczewski J. L. 2005; pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319 [CrossRef]
    [Google Scholar]
  38. Miyazaki E., Chen J. M., Ko C., Bishai W. R. 1999; The Staphylococcus aureus rsbW (orf159) gene encodes an anti-sigma factor of SigB. J Bacteriol 181:2846–2851
    [Google Scholar]
  39. Mobley H. L. T., Garner R. M., Bauerfeind P. 1995; Helicobacter-pylori nickel-transport gene nixA – synthesis of catalytically active urease in Escherichia coli independent of growth-conditions. Mol Microbiol 16:97–109 [CrossRef]
    [Google Scholar]
  40. Moen B., Oust A., Langsrud O., Dorrell N., Marsden G. L., Hinds J., Kohler A., Wren B. W., Rudi K. 2005; Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl Environ Microbiol 71:2086–2094 [CrossRef]
    [Google Scholar]
  41. Novick R. P., Jiang D. R. 2003; The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149:2709–2717 [CrossRef]
    [Google Scholar]
  42. Nurse P., Zavitz K. H., Marians K. J. 1991; Inactivation of the Escherichia coli PriA DNA-replication protein induces the SOS response. J Bacteriol 173:6686–6693
    [Google Scholar]
  43. Paget M. S. B., Molle V., Cohen G., Aharonowitz Y., Buttner M. J. 2001; Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the σ R regulon. Mol Microbiol 42:1007–1020 [CrossRef]
    [Google Scholar]
  44. Pallen M. J., Wren B. W. 1997; The HtrA family of serine proteases. Mol Microbiol 26:209–221 [CrossRef]
    [Google Scholar]
  45. Palma M., Cheung A. L. 2001; σ B activity in Staphylococcus aureus is controlled by RsbU and an additional factor(s) during bacterial growth. Infect Immun 69:7858–7865 [CrossRef]
    [Google Scholar]
  46. Quiberoni A., Rezaiki L., El Karoui M., Biswas I., Tailliez P., Gruss A. 2001; Distinctive features of homologous recombination in an ‘old’ microorganism, Lactococcus lactis. Res Microbiol 152:131–139 [CrossRef]
    [Google Scholar]
  47. Rode T. M., Langsrud S., Holck A., Møretrø T. 2007; Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383 [CrossRef]
    [Google Scholar]
  48. Tsau J. L., Guffanti A. A., Montville T. J. 1992; Conversion of pyruvate to acetoin helps to maintain pH homeostasis in Lactobacillus plantarum. Appl Environ Microbiol 58:891–894
    [Google Scholar]
  49. Uziel O., Borovok I., Schreiber R., Cohen G., Aharonowitz Y. 2004; Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J Bacteriol 186:326–334 [CrossRef]
    [Google Scholar]
  50. Valenzuela M., Cerda O., Toledo H. 2003; Overview on chemotaxis and acid resistance in Helicobacter pylori. Biol Res 36:429–436
    [Google Scholar]
  51. van Vliet A. H. M., Kuipers E. J., Waidner B., Davies B. J., Penn C. W., Vandenbroucke-Grauls C. M., Kist M., Bereswill S., Kusters J. G., de Vries N. 2001; Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun 69:4891–4897 [CrossRef]
    [Google Scholar]
  52. Vaudaux P. E., Francois P., Proctor R. A., McDevitt D., Foster T. J., Albrecht R. M., Lew D. P., Wabers H., Cooper S. L. 1995; Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infect Immun 63:585–590
    [Google Scholar]
  53. Weinrick B., Dunman P. M., McAleese F., Murphy E., Projan S. J., Fang Y., Novick R. P. 2004; Effect of mild acid on gene expression in Staphylococcus aureus. J Bacteriol 186:8407–8423 [CrossRef]
    [Google Scholar]
  54. Wilkins J. C., Homer K. A., Beighton D. 2002; Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol 68:2382–2390 [CrossRef]
    [Google Scholar]
  55. Wood J. M. 1999; Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/005942-0
Loading
/content/journal/micro/10.1099/mic.0.2007/005942-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error