1887

Abstract

Undecaprenyl phosphate (Und-P) is a universal lipid carrier of glycan biosynthetic intermediates for carbohydrate polymers that are exported to the bacterial cell envelope. Und-P arises from the dephosphorylation of undecaprenyl pyrophosphate (Und-PP) molecules produced by synthesis and also from the recycling of released Und-PP after the transfer of the glycan component to other acceptor molecules. The latter reactions take place at the periplasmic side of the plasma membrane, while cytoplasmic enzymes catalyse the synthesis. Four Und-PP pyrophosphatases were recently identified in . One of these, UppP (formerly BacA), accounts for 75 % of the total cellular Und-PP pyrophosphatase activity and has been suggested to participate in the Und-P synthesis pathway. Unlike UppP, the other three pyrophosphatases (YbjG, YeiU and PgpB) have a typical acid phosphatase motif also found in eukaryotic dolichyl-pyrophosphate-recycling pyrophosphatases. This study shows that double and triple deletion mutants in the genes and , and , and , respectively, are supersensitive to the Und-P biosynthesis inhibitor fosmidomycin. In contrast, single or combined deletions including have no effect on fosmidomycin supersensitivity. Experimental evidence is also presented that the acid phosphatase motifs of YbjG and YeiU face the periplasmic space. Furthermore, the quadruple deletion mutant ΔΔΔΔ has a growth defect and abnormal cell morphology, suggesting that accumulation of unprocessed Und-PP-linked O antigen polysaccharides is toxic for these cells. Together, the results support the notion that YbjG, and to a lesser extent YeiU, exert their enzymic activity on the periplasmic side of the plasma membrane and are implicated in the recycling of periplasmic Und-PP molecules.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006312-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2518.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006312-0&mimeType=html&fmt=ahah

References

  1. Abeijon C., Hirschberg C. B. 1992; Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci 17:32–36
    [Google Scholar]
  2. Anderson J. S., Meadow P. M., Haskin M. A., Strominger J. L. 1966; Biosynthesis of the peptidoglycan of bacterial cell walls. I. Utilization of uridine diphosphate acetylmuramyl pentapeptide and uridine diphosphate acetylglucosamine for peptidoglycan synthesis by particulate enzymes from Staphylococcus aureus and Micrococcus lysodeikticus . Arch Biochem Biophys 116:487–515
    [Google Scholar]
  3. Apfel C. M., Takacs B., Fountoulakis M., Stieger M., Keck W. 1999; Use of genomics to identify bacterial undecaprenyl pyrophosphate synthetase: cloning, expression, and characterization of the essential uppS gene. J Bacteriol 181:483–492
    [Google Scholar]
  4. Bugg T. D., Brandish P. E. 1994; From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol Lett 119:255–262
    [Google Scholar]
  5. Burda P., Aebi M. 1999; The dolichol pathway of N -linked glycosylation. Biochim Biophys Acta 1426:239–257
    [Google Scholar]
  6. Cohen S. N., Chang A. C., Hsu L. 1972; Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A 69:2110–2114
    [Google Scholar]
  7. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  8. Derman A. I., Beckwith J. 1995; Escherichia coli alkaline phosphatase localized to the cytoplasm slowly acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. J Bacteriol 177:3764–3770
    [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  10. Drew D., Sjöstrand D., Nilsson J., Urbig T., Chin C.-n., de Gier J.-W., von Heijne G. 2002; Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99:2690–2695
    [Google Scholar]
  11. El Ghachi M., Bouhss A., Blanot D., Mengin-Lecreulx D. 2004; The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113
    [Google Scholar]
  12. El Ghachi M., Derbise A., Bouhss A., Mengin-Lecreulx D. 2005; Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli . J Biol Chem 280:18689–18695
    [Google Scholar]
  13. Feilmeier B. J., Iseminger G., Schroeder D., Webber H., Phillips G. J. 2000; Green fluorescent protein functions as a reporter for protein localization in Escherichia coli . J Bacteriol 182:4068–4076
    [Google Scholar]
  14. Feldman M. F., Marolda C. L., Monteiro M. A., Perry M. B., Parodi A. J., Valvano M. A. 1999; The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274:35129–35138
    [Google Scholar]
  15. Fernandez F., Rush J. S., Toke D. A., Han G. S., Quinn J. E., Carman G. M., Choi J. Y., Voelker D. R., Aebi M., Waechter C. J. 2001; The CWH8 gene encodes a dolichyl pyrophosphate phosphatase with a luminally oriented active site in the endoplasmic reticulum of Saccharomyces cerevisiae . J Biol Chem 276:41455–41464
    [Google Scholar]
  16. Goldman R., Strominger J. L. 1972; Purification and properties of C55-isoprenylpyrophosphate phosphatase from Micrococcus lysodeikticus . J Biol Chem 247:5116–5122
    [Google Scholar]
  17. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  18. Heijne G. V. 1986; The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027
    [Google Scholar]
  19. Helenius J., Aebi M. 2002; Transmembrane movement of dolichol linked carbohydrates during N -glycoprotein biosynthesis in the endoplasmic reticulum. Semin Cell Dev Biol 13:171–178
    [Google Scholar]
  20. Helenius J., Ng D. T., Marolda C. L., Walter P., Valvano M. A., Aebi M. 2002; Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415:447–450
    [Google Scholar]
  21. Hughey R., Krogh A. 1996; Hidden Markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 12:95–107
    [Google Scholar]
  22. Ishikawa K., Mihara Y., Gondoh K., Suzuki E., Asano Y. 2000; X-ray structures of a novel acid phosphatase from Escherichia blattae and its complex with the transition-state analog molybdate. EMBO J 19:2412–2423
    [Google Scholar]
  23. Kuzuyama T. 2002; Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 66:1619–1627
    [Google Scholar]
  24. Kuzuyama T., Shimizu T., Takahashi S., Seto H. 1998a; Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis. Tetrahedron Lett 39:7913–7916
    [Google Scholar]
  25. Kuzuyama T., Takahashi S., Watanabe H., Seto H. 1998b; Direct formation of 2-C-methyl-d-erythritol 4-phosphate from 1-deoxy-d-xylulose 5-phosphate by 1-deoxy-d-xylulose 5-phosphate reductoisomerase, a new enzyme in the non-mevalonate pathway to isopentenyl diphosphate. Tetrahedron Lett 39:4509–4512
    [Google Scholar]
  26. Liu D., Reeves P. R. 1994; Escherichia coli K12 regains its O antigen. Microbiology 140:49–57
    [Google Scholar]
  27. Lois L. M., Campos N., Putra S. R., Danielsen K., Rohmer M., Boronat A. 1998; Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci U S A 95:2105–2110
    [Google Scholar]
  28. Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O. 1993; A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 37:2200–2225
    [Google Scholar]
  29. Manoil C. 1991; Analysis of membrane protein topology using alkaline phosphatase and beta-galactosidase gene fusions. Methods Cell Biol 34:61–75
    [Google Scholar]
  30. Marolda C. L., Welsh J., Dafoe L., Valvano M. A. 1990; Genetic analysis of the O7-polysaccharide biosynthesis region from the Escherichia coli O7 : K1 strain VW187. J Bacteriol 172:3590–3599
    [Google Scholar]
  31. Neuwald A. F. 1997; An unexpected structural relationship between integral membrane phosphatases and soluble haloperoxidases. Protein Sci 6:1764–1767
    [Google Scholar]
  32. Rodriguez-Concepcion M., Boronat A. 2002; Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089
    [Google Scholar]
  33. Rohmer M. 1999; The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574
    [Google Scholar]
  34. Rohmer M., Knani M., Simonin P., Sutter B., Sahm H. 1993; Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524
    [Google Scholar]
  35. Rush J. S., Cho S. K., Jiang S., Hofmann S. L., Waechter C. J. 2002; Identification and characterization of a cDNA encoding a dolichyl pyrophosphate phosphatase located in the endoplasmic reticulum of mammalian cells. J Biol Chem 277:45226–45234
    [Google Scholar]
  36. Shimizu N., Koyama T., Ogura K. 1998; Molecular cloning, expression, and purification of undecaprenyl diphosphate synthase. No sequence similarity between E- and Z-prenyl diphosphate synthases. J Biol Chem 273:19476–19481
    [Google Scholar]
  37. Sonnhammer E. L. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. In Proceedings of Sixth International Conference on Intelligent Systems for Molecular Biology pp 175–182 Edited by Glasgow J., Littlejohn T., Major F., Lathrop R., Sankoff D., Sensen C. Menlo Park, CA: AAAI Press;
    [Google Scholar]
  38. Sprenger G. A., Schorken U., Wiegert T., Grolle S., de Graaf A. A., Taylor S. V., Begley T. P., Bringer-Meyer S., Sahm H. 1997; Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci U S A 94:12857–12862
    [Google Scholar]
  39. Steinbacher S., Kaiser J., Eisenreich W., Huber R., Bacher A., Rohdich F. 2003; Structural basis of fosmidomycin action revealed by the complex with 2-C-methyl-d-erythritol 4-phosphate synthase (IspC. Implications for the catalytic mechanism and anti-malaria drug development. J Biol Chem 278:18401–18407
    [Google Scholar]
  40. Stevenson G., Neal B., Liu D., Hobbs M., Packer N. H., Batley M., Redmond J. W., Lindquist L., Reeves P. 1994; Structure of the O antigen of Escherichia coli K-12 and the sequence of its rfb cluster. J Bacteriol 176:4144–4156
    [Google Scholar]
  41. Stukey J., Carman G. M. 1997; Identification of a novel phosphatase sequence motif. Protein Sci 6:469–472
    [Google Scholar]
  42. Takahashi S., Kuzuyama T., Watanabe H., Seto H. 1998; A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci U S A 95:9879–9884
    [Google Scholar]
  43. Valvano M. A. 2003; Export of O-specific lipopolysaccharide. Front Biosci 8:s452–s471
    [Google Scholar]
  44. White R. H. others 1996; Biosynthesis of isoprenoids in bacteria. In Escherichia coli and Salmonella. Cellular and Molecular Biology pp 637–641 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Yao Z., Valvano M. A. 1994; Genetic analysis of the O-specific lipopolysaccharide biosynthesis region ( rfb ) of Escherichia coli K-12 W3110: identification of genes that confer group 6 specificity to Shigella flexneri serotypes Y and 4a. J Bacteriol 176:4133–4143
    [Google Scholar]
  46. Zeidler J., Schwender J., Müller C., Wiesner J., Weidemeyer C., Beck E., Jomaa H., Lichtenthaler H. K. 1998; Inhibition of the non-mevalonate 1-deoxy-d-xylulose-5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z Naturforsch [C] 53c:980–986
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006312-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006312-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error