1887

Abstract

Novel plasmids were constructed for the analysis of DNA fragments from the rumen bacterium . Five previously unidentified promoters were characterized using a novel primer extension method to identify transcription start sites. The genes downstream of these promoters were not identified, and their activity in expression of genomic traits in wild-type remains putative. Comparison with promoters from this and closely related species revealed a consensus sequence resembling the binding motif for the RNA polymerase -like factor complex. Consensus −35 and −10 sequences within these elements were and AA respectively, interspaced by 15–16 bp. The consensus for the −10 element was extended by one nucleotide upstream and downstream of the standard hexamer (indicated in bold). Promoter strengths were measured by reverse transcription quantitative PCR and -glucuronidase assays. No correlation was found between the composition and context of elements within promoters, and promoter strength. However, a mutation within the −35 element of one promoter revealed that transcriptional strength and choice of transcription start site were sensitive to this single nucleotide change.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006502-0
2007-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3071.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006502-0&mimeType=html&fmt=ahah

References

  1. Agarwal N., Tyagi A. K. 2003; Role of 5′-TGN-3′ motif in the interaction of mycobacterial RNA polymerase with a promoter of ‘extended −10' class. FEMS Microbiol Lett 225:75–83
    [Google Scholar]
  2. Asanuma N., Kawato M., Ohkawara S., Hino T. 2003; Characterization and transcription of the genes encoding enzymes involved in butyrate production in Butyrivibrio fibrisolvens. Curr Microbiol 47:203–207
    [Google Scholar]
  3. Bailey T. L., Gribskov M. 1998; Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14:48–54
    [Google Scholar]
  4. Bannantine J. P., Barletta R. G., Thoen C. O., Andrews R. E. Jr 1997; Identification of Mycobacterium paratuberculosis gene expression signals. Microbiology 143:921–928
    [Google Scholar]
  5. Barker M. M., Gaal T., Josaitis C. A., Gourse R. L. 2001; Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305:673–688
    [Google Scholar]
  6. Barnell W. O., Liu J., Hesman T. L., O'Neill M. C., Conway T. 1992; The Zymomonas mobilis glf, zwf, edd, and glk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region. J Bacteriol 174:2816–2823
    [Google Scholar]
  7. Bayley D. P., Rocha E. R., Smith C. J. 2000; Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193:149–154
    [Google Scholar]
  8. Beard C. E., Hefford M. A., Forster R. J., Sontakke S., Teather R. M., Gregg K. 1995; A stable and efficient transformation system for Butyrivibrio fibrisolvens OB156. Curr Microbiol 30:105–109
    [Google Scholar]
  9. Beard C. E., Gregg K., Kalmokoff M., Teather R. M. 2000; Construction of a promoter-rescue plasmid for Butyrivibrio fibrisolvens and its use in characterization of a flagellin promoter. Curr Microbiol 40:164–168
    [Google Scholar]
  10. Belyaeva T., Griffiths L., Minchin S., Cole J., Busby S. 1993; The Escherichia coli cysG promoter belongs to the ‘extended −10’ class of bacterial promoters. Biochem J 296:851–857
    [Google Scholar]
  11. Box G. E. P., Hunter W. G., Hunter J. S. 1978 Statistics for Experimenters New York: John Wiley & Sons;
  12. Breslauer K. J., Frank R., Blocker H., Marky L. A. 1986; Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A 83:3746–3750
    [Google Scholar]
  13. Brooker J. D., Lockington R. A., Attwood G. T., Langridge P., Nield J. K., Langridge U. 1989; Engineering ruminal flora for improved protein quality. In The Biology of Wool and Hair pp 425–440 Edited by Rogers G. E., Reis P. J., Ward K. A., Marshal R. C. London: Chapman & Hall;
    [Google Scholar]
  14. Brosius J., Cate R. L., Perlmutter A. P. 1982; Precise location of two promoters for the β-lactamase gene of pBR322. S1 mapping of ribonucleic acid isolated from Escherichia coli or synthesized in vitro. J Biol Chem 257:9205–9210
    [Google Scholar]
  15. Burr T., Mitchell J., Kolb A., Minchin S., Busby S. 2000; DNA sequence elements located immediately upstream of the −10 hexamer in Escherichia coli promoters: a systematic study. Nucleic Acids Res 28:1864–1870
    [Google Scholar]
  16. Bustin S. A. 2000; Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193
    [Google Scholar]
  17. Chan B., Busby S. 1989; Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase. Gene 84:227–236
    [Google Scholar]
  18. Chatterji D., Ojha A. K. 2001; Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4:160–165
    [Google Scholar]
  19. Dai X., Rothman-Denes L. B. 1999; DNA structure and transcription. Curr Opin Microbiol 2:126–130
    [Google Scholar]
  20. Dong X. R., Li S. F., DeMoss J. A. 1992; Upstream sequence elements required for NarL-mediated activation of transcription from the narGHJI promoter of Escherichia coli. J Biol Chem 267:14122–14128
    [Google Scholar]
  21. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  22. Estrem S. T., Gaal T., Ross W., Gourse R. L. 1998; Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A 95:9761–9766
    [Google Scholar]
  23. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  24. Forster R. J., Teather R. M., Gong J., Deng S. J. 1996; 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer. Lett Appl Microbiol 23:218–222
    [Google Scholar]
  25. Gaal T., Ross W., Estrem S. T., Nguyen L. H., Burgess R. R., Gourse R. L. 2001; Promoter recognition and discrimination by E σs RNA polymerase. Mol Microbiol 42:939–954
    [Google Scholar]
  26. Gabrielian A. E., Landsman D., Bolshoy A. 1999; Curved DNA in promoter sequences. In Silico Biol 1:183–196
    [Google Scholar]
  27. Ghosh D. 1998; OOTFD (Object-Oriented Transcription Factors Database): an object-oriented successor to TFD. Nucleic Acids Res 26:360–362
    [Google Scholar]
  28. Ghosh D. 2000; Object-oriented transcription factors database (ooTFD. Nucleic Acids Res 28:308–310
    [Google Scholar]
  29. Gibson T. J. 1984; Studies on the Epstein–Barr Virus Genome. PhD thesis University of Cambridge;
  30. Glanemann C., Loos A., Gorret N., Willis L. B., O'Brien X. M., Lessard P. A., Sinskey A. J. 2003; Disparity between changes in mRNA abundance and enzyme activity in Corynebacterium glutamicum: implications for DNA microarray analysis. Appl Microbiol Biotechnol 61:61–68
    [Google Scholar]
  31. Gregg K., Sharpe H. 1991; Enhancement of rumen microbial detoxification by gene transfer. In Physiological Aspects of Digestion and Metabolism in Ruminants: Proceedings of the Seventh International Symposium of Ruminant Physiology pp 719–735 San Diego: Academic Press;
    [Google Scholar]
  32. Gregg K., Bauchop T., Hudman J. F., Vercoe P. E., Ware C. E., Woods J. R., Leng R. A. 1987; Application of recombinant DNA methods to rumen bacteria. In Recent Advances in Animal Nutrition in Australia1987 pp 112–120 Edited by Farrell D. J. Arimdale: University of New England;
    [Google Scholar]
  33. Gregg K., Cooper C. L., Schafer D. J., Sharpe H., Beard C. E., Allen G., Xu J. 1994; Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Biotechnology (N Y) 12:1361–1365
    [Google Scholar]
  34. Gregg K., Hamdorf B., Henderson K., Kopecny J., Wong C. 1998; Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl Environ Microbiol 64:3496–3498
    [Google Scholar]
  35. Hefford M. A., Kobayashi Y., Allard S. E., Forster R. J., Teather R. M. 1997; Sequence analysis and characterization of pOM1, a small cryptic plasmid from Butyrivibrio fibrisolvens, and its use in construction of a new family of cloning vectors for butyrivibrios. Appl Environ Microbiol 63:1701–1711
    [Google Scholar]
  36. Helmann J. D. 1995; Compilation and analysis of Bacillus subtilis σA-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23:2351–2360
    [Google Scholar]
  37. Helmann J. D. 1999; Anti-sigma factors. Curr Opin Microbiol 2:135–141
    [Google Scholar]
  38. Henkin T. M. 1996; Control of transcription termination in prokaryotes. Annu Rev Genet 30:35–57
    [Google Scholar]
  39. Henkin T. M., Yanofsky C. 2002; Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. Bioessays 24:700–707
    [Google Scholar]
  40. Householder T. C., Belli W. A., Lissenden S., Cole J. A., Clark V. L. 1999; cis- and trans-acting elements involved in regulation of aniA, the gene encoding the major anaerobically induced outer membrane protein in Neisseria gonorrhoeae. J Bacteriol 181:541–551
    [Google Scholar]
  41. Hsu L. M., Vo N. V., Chamberlin M. J. 1995; Escherichia coli transcript cleavage factors GreA and GreB stimulate promoter escape and gene expression in vivo and in vitro. Proc Natl Acad Sci U S A 92:11588–11592
    [Google Scholar]
  42. Ishihama A. 2000; Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol 54:499–518
    [Google Scholar]
  43. Kahala M., Palva A. 1999; The expression signals of the Lactobacillus brevis slpA gene direct efficient heterologous protein production in lactic acid bacteria. Appl Microbiol Biotechnol 51:71–78
    [Google Scholar]
  44. Kalmokoff M. L., Lu D., Whitford M. F., Teather R. M. 1999; Evidence for production of a new lantibiotic (butyrivibriocin OR79A) by the ruminal anaerobe Butyrivibrio fibrisolvens OR79: characterization of the structural gene encoding butyrivibriocin OR79A. Appl Environ Microbiol 65:2128–2135
    [Google Scholar]
  45. Kalmokoff M. L., Allard S., Austin J. W., Whitford M. F., Hefford M. A. 2000; Biochemical and genetic characterization of the flagellar filaments from the rumen anaerobe Butyrivibrio fibrisovlens OR77. Anaerobe 6:93–109
    [Google Scholar]
  46. Keilty S., Rosenberg M. 1987; Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem 262:6389–6395
    [Google Scholar]
  47. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120
    [Google Scholar]
  48. Klieve A. V., Hudman J. F., Bauchop T. 1989; Inducible bacteriophages from ruminal bacteria. Appl Environ Microbiol 55:1630–1634
    [Google Scholar]
  49. Kobayashi Y., Forster R. J., Teather R. M. 2000; Development of a competitive polymerase chain reaction assay for the ruminal bacterium Butyrivibrio fibrisolvens OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiol Lett 188:185–190
    [Google Scholar]
  50. Kopecny J., Logar R. M., Kobayashi Y. 2001; Phenotypic and genetic data supporting reclassification of Butyrivibrio fibrisolvens isolates. Folia Microbiol (Praha 46:45–48
    [Google Scholar]
  51. Kopecny J., Zorec M., Mrazek J., Kobayashi Y., Marinsek-Logar R. 2003; Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen. Int J Syst Evol Microbiol 53:201–209
    [Google Scholar]
  52. Kwon Y. M., Ricke S. C. 2000; Efficient amplification of multiple transposon-flanking sequences. J Microbiol Methods 41:195–199
    [Google Scholar]
  53. Li J., Stewart V. 1992; Localization of upstream sequence elements required for nitrate and anaerobic induction of fdn (formate dehydrogenase-N) operon expression in Escherichia coli K-12. J Bacteriol 174:4935–4942
    [Google Scholar]
  54. Lisser S., Margalit H. 1993; Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21:1507–1516
    [Google Scholar]
  55. Lloyd G., Landini P., Busby S. 2001; Activation and repression of transcription initiation in bacteria. Essays Biochem 37:17–31
    [Google Scholar]
  56. Mackie R. I., White B. A. 1990; Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J Dairy Sci 73:2971–2995
    [Google Scholar]
  57. Malakooti J., Wang S. P., Ely B. 1995; A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J Bacteriol 177:4372–4376
    [Google Scholar]
  58. McCracken A., Turner M. S., Giffard P., Hafner L. M., Timms P. 2000; Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173:383–389
    [Google Scholar]
  59. Misener S., Krawetz S. 2000 Bioinformatics Methods and Protocols: Methods in Molecular Biology Totowa: Humana Press;
  60. Niehus E., Ye F., Suerbaum S., Josenhans C. 2002; Growth phase-dependent and differential transcriptional control of flagellar genes in Helicobacter pylori. Microbiology 148:3827–3837
    [Google Scholar]
  61. Patek M., Nesvera J., Guyonvarch A., Reyes O., Leblon G. 2003; Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323
    [Google Scholar]
  62. Petersen L., Larsen T. S., Ussery D. W., On S. L., Krogh A. 2003; rpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a −35 box. J Mol Biol 326:1361–1372
    [Google Scholar]
  63. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  64. Reeve W. G., Tiwari R. P., Worsley P. S., Dilworth M. J., Glenn A. R., Howieson J. G. 1999; Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology 145:1307–1316
    [Google Scholar]
  65. Reeve W. G., Tiwari R. P., Kale N. B., Dilworth M. J., Glenn A. R. 2002; ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol 43:981–991
    [Google Scholar]
  66. Rhodius V. A., Busby S. J. 1998; Positive activation of gene expression. Curr Opin Microbiol 1:152–159
    [Google Scholar]
  67. Rogers G. E. 1990; Improvement of wool production through genetic engineering. Trends Biotechnol 8:6–11
    [Google Scholar]
  68. Rojo F. 2001; Mechanisms of transcriptional repression. Curr Opin Microbiol 4:145–151
    [Google Scholar]
  69. Rosado M., Gage D. J. 2003; Transcriptional control of a rRNA promoter of the nodulating symbiont Sinorhizobium meliloti. FEMS Microbiol Lett 226:15–22
    [Google Scholar]
  70. Sabelnikov A. G., Greenberg B., Lacks S. A. 1995; An extended −10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J Mol Biol 250:144–155
    [Google Scholar]
  71. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  72. Sanderson A., Mitchell J. E., Minchin S. D., Busby S. J. 2003; Substitutions in the Escherichia coli RNA polymerase σ70 factor that affect recognition of extended −10 elements at promoters. FEBS Lett 544:199–205
    [Google Scholar]
  73. Schneider D. A., Gaal T., Gourse R. L. 2002; NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc Natl Acad Sci U S A 99:8602–8607
    [Google Scholar]
  74. Smith C. J., Hespell R. B. 1983; Symposium: application of molecular genetics in ruminants. Prospects for development and use of recombinant DNA techniques with ruminal bacteria. J Dairy Sci 66:1536–1546
    [Google Scholar]
  75. Tatusova T. A., Madden T. L. 1999; blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250
    [Google Scholar]
  76. Teather R. M. 1985; Application of genetic manipulation to rumen microflora. Can J Anim Sci 65:563–574
    [Google Scholar]
  77. Teather R. M., Forster R. J. 1998; Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can J Anim Sci 78:57–69
    [Google Scholar]
  78. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  79. Vanet A., Marsan L., Labigne A., Sagot M. F. 2000; Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori σ80 family of promoter signals. J Mol Biol 297:335–353
    [Google Scholar]
  80. Vogel J., Axmann I. M., Herzel H., Hess W. R. 2003; Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res 31:2890–2899
    [Google Scholar]
  81. Voskuil M. I., Chambliss G. H. 1998; The −16 region of Bacillus subtilis and other Gram-positive bacterial promoters. Nucleic Acids Res 26:3584–3590
    [Google Scholar]
  82. Voskuil M. I., Chambliss G. H. 2002; The TRTGn motif stabilizes the transcription initiation open complex. J Mol Biol 322:521–532
    [Google Scholar]
  83. Weiner J. III, Herrmann R., Browning G. F. 2000; Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 28:4488–4496
    [Google Scholar]
  84. Woods J. R., Hudman J. F., Gregg K. 1989; Isolation of an endoglucanase gene from Bacteroides ruminicola subsp. brevis. J Gen Microbiol 135:2543–2549
    [Google Scholar]
  85. Wosten M. M. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev 22:127–150
    [Google Scholar]
  86. Xu H., Hoover T. R. 2001; Transcriptional regulation at a distance in bacteria. Curr Opin Microbiol 4:138–144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006502-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006502-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error