1887

Abstract

The structure and function of the microbial community in a full-scale enhanced biological phosphorus removal wastewater treatment plant (WWTP; Skagen) were investigated using the full-cycle rRNA approach, combined with ecophysiological studies. A total of 87 16S rRNA gene sequences were retrieved, and 78 operational taxonomic units were identified. Novel oligonucleotide probes were designed, and quantitative fluorescence hybridization revealed that six hitherto undescribed probe-defined groups within the phylum (two groups), and classes (two groups) and (two groups), were relatively abundant (>1 % of total biovolume) in the Skagen WWTP and 10 other full-scale WWTPs with biological P removal. The most abundant was a group of rod-shaped attached to filamentous bacteria, which is distantly related to the genus of the family and comprised 9–19 % of the bacterial biovolume in all the WWTPs investigated. The other five probe-defined groups were found in all WWTPs, but they were less abundant (1–6 %). Two groups had a glycogen-accumulating phenotype and one -related group had a polyphosphate-accumulating phenotype, and they were potentially all involved in denitrification. In total, about 81 % of all bacteria hybridizing with the general eubacterial probe were detected in the Skagen WWTP by using clone- or group-specific probes, indicating that most members of the microbial community had been identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007245-0
2007-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4061.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007245-0&mimeType=html&fmt=ahah

References

  1. Adamczyk J., Hesselsoe M., Iversen N., Horn M., Lehner A., Nielsen P. H., Schloter M., Roslev P., Wagner M. 2003; The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887
    [Google Scholar]
  2. Alm E. W., Oerther D. B., Larsen N., Stahl D. A., Raskin L. 1996; The oligonucleotide probe database. Appl Environ Microbiol 62:3557–3559
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  4. Amann R. I. 1995; In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual pp MMEM-3.3.6/1–MMEM-3.3.6/15 Edited by Akkermans A. D. L., van Elsas J., de Bruijn F. London: Kluwer Academic Publications;
    [Google Scholar]
  5. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S ribosomal-RNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  6. Beer M., Kong Y. H., Seviour R. J. 2004; Are some putative glycogen accumulating organisms (GAO) in anaerobic : aerobic activated sludge systems members of the Alphaproteobacteria?. Microbiology 150:2267–2275
    [Google Scholar]
  7. Beer M., Stratton H. M., Griffiths P. C., Seviour R. J. 2006; Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?. J Appl Microbiol 100:233–243
    [Google Scholar]
  8. Bjornsson L., Hugenholtz P., Tyson G. W., Blackall L. L. 2002; Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148:2309–2318
    [Google Scholar]
  9. Blackall L. L., Stratton H., Bradford D., Dot T. D., Sjorup C., Seviour E. M., Seviour R. J. 1996; Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46:344–346
    [Google Scholar]
  10. Bouvier T., del Giorgio P. A. 2003; Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH): a quantitative review of published reports. FEMS Microbiol Ecol 44:3–15
    [Google Scholar]
  11. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. 1981; Gene organization and primary structure of a ribosomal-RNA operon from Escherichia coli . J Mol Biol 148:107–127
    [Google Scholar]
  12. Burow L. C., Kong Y. H., Nielsen J. L., Blackall L. L., Nielsen P. H. 2007; Abundance and ecophysiology of Defluviicoccus spp., glycogen-accumulating organisms in full-scale wastewater treatment processes. Microbiology 153:178–185
    [Google Scholar]
  13. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam S. A., McGarrell D. M., Garrity G. M., Tiedje J. M. 2005; The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296
    [Google Scholar]
  14. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L. 2000; Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol 66:1175–1182
    [Google Scholar]
  15. Crocetti G. R., Banfield J. F., Keller J., Bond P. L., Blackall L. L. 2002; Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148:3353–3364
    [Google Scholar]
  16. Daims H., Bruhl A., Amann R., Schleifer K. H., Wagner M. 1999; The domain-specific probe EUB338 is insufficient for the detection of all Bacteria : development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444
    [Google Scholar]
  17. Daims H., Nielsen J. L., Nielsen P. H., Schleifer K. H., Wagner M. 2001; In situ characterization of Nitrospira -like nitrite oxidizing bacteria active in wastewater treatment plants. Appl Environ Microbiol 67:5273–5284
    [Google Scholar]
  18. Ginige M. P., Hugenholtz P., Daims H., Wagner M., Keller J., Blackall L. L. 2004; Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol 70:588–596
    [Google Scholar]
  19. Head I. M., Saunders J. R., Pickup R. W. 1998; Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21
    [Google Scholar]
  20. Hess A., Zarda B., Hahn D., Haner A., Stax D., Hohener P., Zeyer J. 1997; In situ analysis of denitrifying toluene- and m -xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 63:2136–2141
    [Google Scholar]
  21. Hesselmann R. P. X., Werlen C., Hahn D., van der Meer J. R., Zehnder A. J. B. 1999; Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst Appl Microbiol 22:454–465
    [Google Scholar]
  22. Huber T., Faulkner G., Hugenholtz P. 2004; Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319
    [Google Scholar]
  23. Hugenholtz P., Tyson G. W., Webb R. I., Wagner A. M., Blackall L. L. 2001; Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol 67:411–419
    [Google Scholar]
  24. Juretschko S., Loy A., Lehner A., Wagner M. 2002; The microbial community composition of a nitrifying–denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99
    [Google Scholar]
  25. Kong Y. H., Beer M., Seviour R. J., Lindrea K. C., Rees G. N. 2001; Structure and functional analysis of the microbial community in an aerobic : anaerobic sequencing batch reactor (SBR) with no phosphorus removal. Syst Appl Microbiol 24:597–609
    [Google Scholar]
  26. Kong Y., Ong S. L., Ng W. J., Liu W.-T. 2002; Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic–aerobic activated sludge processes. Environ Microbiol 4:753–757
    [Google Scholar]
  27. Kong Y., Nielsen J. L., Nielsen P. H. 2004; Microautoradiographic study of Rhodocyclus -related polyphosphate accumulating bacteria in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 70:5383–5390
    [Google Scholar]
  28. Kong Y., Nielsen J. L., Nielsen P. H. 2005; Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol 71:4076–4085
    [Google Scholar]
  29. Kong Y., Xia Y., Nielsen J. L., Nielsen P. H. 2006; Ecophysiology of a group of uncultured Gammaproteobacterial glycogen-accumulating organisms in full-scale enhanced biological phosphorus removal wastewater treatment plants. Environ Microbiol 8:479–489
    [Google Scholar]
  30. Kragelund C., Levantesi C., Borger A., Thelen K., Eikelboom D., Tandoi V., Kong Y. H., van der Waarde J., Krooneman J. other authors 2007; Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol 59:671–682
    [Google Scholar]
  31. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163
    [Google Scholar]
  32. Lajoie C. A., Layton A. C., Gregory I. R., Sayler G. S., Taylor D. E., Meyers A. J. 2000; Zoogleal clusters and sludge dewatering potential in an industrial activated-sludge wastewater treatment plant. Water Environ Res 72:56–64
    [Google Scholar]
  33. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–176 Edited by Stackebrandt E., Goodfellow M. London: Wiley;
    [Google Scholar]
  34. Lee N., Nielsen P. H., Andreasen K. H., Juretschko S., Nielsen J. L., Schleifer K. H., Wagner M. 1999; Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure–function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297
    [Google Scholar]
  35. Loy A., Horn M., Wagner M. 2003; probeBase: an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31:514–516
    [Google Scholar]
  36. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371
    [Google Scholar]
  37. Maixner F., Noguera D. R., Anneser B., Stoecker K., Wegl G., Wagner M., Daims H. 2006; Nitrite concentration influences the population structure of Nitrospira -like bacteria. Environ Microbiol 8:1487–1495
    [Google Scholar]
  38. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K. H. 1996; Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142:1097–1106
    [Google Scholar]
  39. Meier H., Amann R., Ludwig W., Schleifer K. H. 1999; Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol 22:186–196
    [Google Scholar]
  40. Mino T., Van Loosdrecht M. C. M., Heijnen J. J. 1998; Microbiology and biochemistry of the enhanced biological phosphate removal process. Water Res 32:3193–3207
    [Google Scholar]
  41. Mobarry B. K., Wagner M., Urbain V., Rittmann B. E., Stahl D. A. 1996; Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162
    [Google Scholar]
  42. Neef A. 1997 Anwendung der in situ Einzelzell-Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen Doctoral thesis Technische Universität München;
  43. Nielsen A. T., Liu W. T., Filipe C., Grady L., Molin S., Stahl D. A. 1999; Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258
    [Google Scholar]
  44. Roller C., Wagner M., Amann R., Ludwig W., Schleifer K. H. 1994; In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology 140:2849–2858
    [Google Scholar]
  45. Rossello-Mora R. A., Wagner M., Amann R., Schleifer K. H. 1995; The abundance of Zoogloea ramigera in sewage treatment plants. Appl Environ Microbiol 61:702–707
    [Google Scholar]
  46. Schauer M., Hahn M. W. 2005; Diversity and phylogenetic affiliations of morphologically conspicuous large filamentous bacteria occurring in the pelagic zones of a broad spectrum of freshwater habitats. Appl Environ Microbiol 71:1931–1940
    [Google Scholar]
  47. Seviour R. J., Lindrea K. C., Griffiths P. C., Blackall L. L. 1999; The activated sludge process. In The Microbiology of Activated Sludge pp 44–74 Edited by Seviour R. J., Blackall L. L. Dordrecht: Kluwer Academic Publishers;
    [Google Scholar]
  48. Seviour R. J., Mino T., Onuki M. 2003; The microbiology of biological phosphorus removal in activated sludge systems. FEMS Microbiol Rev 27:99–127
    [Google Scholar]
  49. Singleton D. R., Furlong M. A., Rathbun S. L., Whitman W. B. 2001; Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376
    [Google Scholar]
  50. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  51. Thomsen T. R., Nielsen J. L., Ramsing N. B., Nielsen P. H. 2004; Micromanipulation and further identification of FISH-labelled microcolonies of a dominant denitrifying bacterium in activated sludge. Environ Microbiol 6:470–479
    [Google Scholar]
  52. Thomsen T. R., Kong Y., Nielsen P. H. 2007; Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiol Ecol 60:370–382
    [Google Scholar]
  53. Tykesson E., Blackall L. L., Kong Y., Nielsen P. H., Jansen J. L. 2006; Applicability of experience from laboratory reactors with biological phosphorus removal in full-scale plants. Water Sci Technol 54:267–275
    [Google Scholar]
  54. Wagner M., Loy A. 2002; Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227
    [Google Scholar]
  55. Wallner G., Amann R., Beisker W. 1993; Optimizing fluorescent in situ hybridization with ribosomal-RNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14:136–143
    [Google Scholar]
  56. Wong M. T., Mino T., Seviour R. J., Onuki M., Liu W. T. 2005; In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res 39:2901–2914
    [Google Scholar]
  57. Xia Y., Kong Y. H., Nielsen P. H. 2007; In situ detection of protein-hydrolyzing microorganisms in activated sludge. FEMS Microbiol Ecol 60:156–165
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007245-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007245-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error