1887

Abstract

Type III secretion systems (T3SSs or secretons) are central virulence factors of many Gram-negative bacteria, used to inject protein effectors of virulence into eukaryotic host cells. Their overall morphology, consisting of a cytoplasmic region, an inner- and outer-membrane section and an extracellular needle, is conserved in various species. A portion of the secreton, containing the transmembrane regions and needle, has been isolated biochemically and termed the ‘needle complex’ (NC). However, there are still unsolved questions concerning the nature and relative arrangement of the proteins assembling the NC. Until these are resolved, the mode of function of the NC cannot be clarified. This paper describes an affinity purification method that enables highly efficient purification of NCs under near-physiological conditions. Using this method, three new minor components of the NC were identified by mass spectrometry: IpaD, a known component of the needle tip complex, and two predicted components of its central inner-membrane export apparatus, Spa40 and Spa24. A further minor component of the NC, MxiM, is only detected by immunoblotting. MxiM is a ‘pilotin’-type protein for the outer-membrane ‘secretin’ ring formed of MxiD. As expected, it localized to the outer rim of the upper ring of NCs, validating the other findings.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007781-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2405.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007781-0&mimeType=html&fmt=ahah

References

  1. Allaoui A., Sansonetti P. J., Parsot C. 1992; MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J Bacteriol 174:7661–7669
    [Google Scholar]
  2. Allaoui A., Sansonetti P. J., Parsot C. 1993; MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins. Mol Microbiol 7:59–68
    [Google Scholar]
  3. Allaoui A., Sansonetti P. J., Menard R., Barzu S., Mounier J., Phalipon A., Parsot C. 1995; MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination. Mol Microbiol 17:461–470
    [Google Scholar]
  4. Bahrani F. K., Sansonetti P. J., Parsot C. 1997; Secretion of Ipa proteins by Shigella flexneri : inducer molecules and kinetics of activation. Infect Immun 65:4005–4010
    [Google Scholar]
  5. Bayan N., Guilvout I., Pugsley A. P. 2006; Secretins take shape. Mol Microbiol 60:1–4
    [Google Scholar]
  6. Benjelloun-Touimi Z., Sansonetti P. J., Parsot C. 1995; SepA, the major extracellular protein of Shigella flexneri : autonomous secretion and involvement in tissue invasion. Mol Microbiol 17:123–135
    [Google Scholar]
  7. Blocker A., Gounon P., Larquet E., Niebuhr K., Cabiaux V., Parsot C., Sansonetti P. 1999; The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J Cell Biol 147:683–693
    [Google Scholar]
  8. Blocker A., Jouihri N., Larquet E., Gounon P., Ebel F., Parsot C., Sansonetti P., Allaoui A. 2001; Structure and composition of the Shigella flexneri ‘needle complex’, a part of its type III secreton. Mol Microbiol 39:652–663
    [Google Scholar]
  9. Blocker A., Komoriya K., Aizawa S. 2003; Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A 100:3027–3030
    [Google Scholar]
  10. Burghout P., van Boxtel R., Van Gelder P., Ringler P., Muller S. A., Tommassen J., Koster M. 2004; Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica . J Bacteriol 186:4645–4654
    [Google Scholar]
  11. Cordes F. S., Komoriya K., Larquet E., Yang S., Egelman E. H., Blocker A., Lea S. M. 2003; Helical structure of the needle of the type III secretion system of Shigella flexneri . J Biol Chem 278:17103–17107
    [Google Scholar]
  12. Cordes F. S., Daniell S., Kenjale R., Saurya S., Picking W. L., Picking W. D., Booy F., Lea S. M., Blocker A. 2005; Helical packing of needles from functionally altered Shigella type III secretion systems. J Mol Biol 354:206–211
    [Google Scholar]
  13. Cossart P., Sansonetti P. J. 2004; Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248
    [Google Scholar]
  14. Daniell S. J., Takahashi N., Wilson R., Friedberg D., Rosenshine I., Booy F. P., Shaw R. K., Knutton S., Frankel G., Aizawa S. 2001; The filamentous type III secretion translocon of enteropathogenic Escherichia coli . Cell Microbiol 3:865–871
    [Google Scholar]
  15. Deane J. E., Roversi P., Cordes F. S., Johnson S., Kenjale R., Daniell S., Booy F., Picking W. D., Picking W. L. other authors 2006; Molecular model of a type III secretion system needle: implications for host-cell sensing. Proc Natl Acad Sci U S A 103:12529–12533
    [Google Scholar]
  16. Durand J. M., Bjork G. R., Kuwae A., Yoshikawa M., Sasakawa C. 1997; The modified nucleoside 2-methylthio- N 6-isopentenyladenosine in tRNA of Shigella flexneri is required for expression of virulence genes. J Bacteriol 179:5777–5782
    [Google Scholar]
  17. Espina M., Olive A. J., Kenjale R., Moore D. S., Ausar S. F., Kaminski R. W., Oaks E. V., Middaugh C. R., Picking W. D., Picking W. L. 2006; IpaD localizes to the tip of the type III secretion system needle of Shigella flexneri . Infect Immun 74:4391–4400
    [Google Scholar]
  18. Fan F., Ohnishi K., Francis N. R., Macnab R. M. 1997; The FliP and FliR proteins of Salmonella typhimurium , putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol Microbiol 26:1035–1046
    [Google Scholar]
  19. Ferris H. U., Furukawa Y., Minamino T., Kroetz M. B., Kihara M., Namba K., Macnab R. M. 2005; FlhB regulates ordered export of flagellar components via an autocleavage mechanism. J Biol Chem 280:41236–41242
    [Google Scholar]
  20. Francis N. R., Sosinsky G. E., Thomas D., DeRosier D. J. 1994; Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol 235:1261–1270
    [Google Scholar]
  21. Hale T. L. 1998; Bacilliary dysentery. In Topley and Wilson's Microbiology and Microbial Infections pp 479–493 Edited by Balows A., Sussman M., Collier L. H. London: Hodder Arnold;
    [Google Scholar]
  22. Hirai T., Murata K., Mitsuoka K., Kimura Y., Fujiyoshi Y. 1999; Trehalose embedding technique for high-resolution electron crystallography: application to structural study on bacteriorhodopsin. J Electron Microsc (Tokyo 48:653–658
    [Google Scholar]
  23. Johnson S., Roversi P., Espina M., Olive A., Deane J. E., Birket S., Field T., Picking W. D., Blocker A. J. other authors 2007; Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. J Biol Chem 282:4035–4044
    [Google Scholar]
  24. Jones C. J., Macnab R. M. 1990; Flagellar assembly in Salmonella typhimurium : analysis with temperature-sensitive mutants. J Bacteriol 172:1327–1339
    [Google Scholar]
  25. Jones C. J., Macnab R. M., Okino H., Aizawa S. 1990; Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium . J Mol Biol 212:377–387
    [Google Scholar]
  26. Kenjale R., Wilson J., Zenk S. F., Saurya S., Picking W. L., Picking W. D., Blocker A. 2005; The needle component of the type III secreton of Shigella regulates the activity of the secretion apparatus. J Biol Chem 280:42929–42937
    [Google Scholar]
  27. Kimbrough T. G., Miller S. I. 2000; Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc Natl Acad Sci U S A 97:11008–11013
    [Google Scholar]
  28. Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galan J. E., Aizawa S. I. 1998; Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602–605
    [Google Scholar]
  29. Lavander M., Sundberg L., Edqvist P. J., Lloyd S. A., Wolf-Watz H., Forsberg A. 2002; Proteolytic cleavage of the FlhB homologue YscU of Yersinia pseudotuberculosis is essential for bacterial survival but not for type III secretion. J Bacteriol 184:4500–4509
    [Google Scholar]
  30. Magdalena J., Hachani A., Chamekh M., Jouihri N., Gounon P., Blocker A., Allaoui A. 2002; Spa32 regulates a switch in substrate specificity of the type III secreton of Shigella flexneri from needle components to Ipa proteins. J Bacteriol 184:3433–3441
    [Google Scholar]
  31. Marlovits T. C., Kubori T., Sukhan A., Thomas D. R., Galan J. E., Unger V. M. 2004; Structural insights into the assembly of the type III secretion needle complex. Science 306:1040–1042
    [Google Scholar]
  32. Marlovits T. C., Kubori T., Lara-Tejero M., Thomas D., Unger V. M., Galan J. E. 2006; Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640
    [Google Scholar]
  33. Morita-Ishihara T., Ogawa M., Sagara H., Yoshida M., Katayama E., Sasakawa C. 2006; Shigella Spa33 is an essential C-ring component of type III secretion machinery. J Biol Chem 281:599–607
    [Google Scholar]
  34. Niebuhr K., Ebel F. 2003; Generation of monoclonal antibodies against secreted proteins of STEC. Methods Mol Med 73:125–135
    [Google Scholar]
  35. Ogino T., Ohno R., Sekiya K., Kuwae A., Matsuzawa T., Nonaka T., Fukuda H., Imajoh-Ohmi S., Abe A. 2006; Assembly of the type III secretion apparatus of enteropathogenic Escherichia coli . J Bacteriol 188:2801–2811
    [Google Scholar]
  36. Ohnishi K., Fan F., Schoenhals G. J., Kihara M., Macnab R. M. 1997; The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium : putative components for flagellar assembly. J Bacteriol 179:6092–6099
    [Google Scholar]
  37. Parsot C. 1994; Shigella flexneri : genetics of entry and intercellular dissemination in epithelial cells. Curr Top Microbiol Immunol 192:217–241
    [Google Scholar]
  38. Sani M., Allaoui A., Fusetti F., Oostergetel G. T., Keegstra W., Boekema E. J. 2007a; Structural organization of the needle complex of the type III secretion apparatus of Shigella flexneri . Micron 38:291–301
    [Google Scholar]
  39. Sani M., Botteaux A., Parsot C., Sansonetti P., Boekema E. J., Allaoui A. 2007b; IpaD is localized at the tip of the Shigella flexneri type III secretion apparatus. Biochim Biophys Acta 1770:307–311
    [Google Scholar]
  40. Schuch R., Maurelli A. T. 1999; The Mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation. Infect Immun 67:1982–1991
    [Google Scholar]
  41. Schuch R., Maurelli A. T. 2001; MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella , interact with and stabilize the MxiD secretin in the cell envelope. J Bacteriol 183:6991–6998
    [Google Scholar]
  42. Sosinsky G. E., Francis N. R., DeRosier D. J., Wall J. S., Simon M. N., Hainfeld J. 1992a; Mass determination and estimation of subunit stoichiometry of the bacterial hook-basal body flagellar complex of Salmonella typhimurium by scanning transmission electron microscopy. Proc Natl Acad Sci U S A 89:4801–4805
    [Google Scholar]
  43. Sosinsky G. E., Francis N. R., Stallmeyer M. J., DeRosier D. J. 1992b; Substructure of the flagellar basal body of Salmonella typhimurium . J Mol Biol 223:171–184
    [Google Scholar]
  44. Sukhan A., Kubori T., Wilson J., Galan J. E. 2001; Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183:1159–1167
    [Google Scholar]
  45. Suzuki T., Lett M. C., Sasakawa C. 1995; Extracellular transport of VirG protein in Shigella . J Biol Chem 270:30874–30880
    [Google Scholar]
  46. Tamano K., Aizawa S., Sasakawa C. 2002; Purification and detection of Shigella type III secretion needle complex. Methods Enzymol 358:385–392
    [Google Scholar]
  47. Van Arnam J. S., McMurry J. L., Kihara M., Macnab R. M. 2004; Analysis of an engineered Salmonella flagellar fusion protein, FliR-FlhB. J Bacteriol 186:2495–2498
    [Google Scholar]
  48. Veenendaal A. K., Hodgkinson J. L., Schwarzer L., Stabat D., Zenk S. F., Blocker A. J. 2007; The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol 63:1719–1730
    [Google Scholar]
  49. Yip C. K., Kimbrough T. G., Felise H. B., Vuckovic M., Thomas N. A., Pfuetzner R. A., Frey E. A., Finlay B. B., Miller S. I. other authors 2005; Structural characterization of the molecular platform for type III secretion system assembly. Nature 435:702–707
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007781-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007781-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error