1887

Abstract

Currently known fungal -amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal -amylases. The phylogenetic analysis shows that they cluster in the recently identified subfamily GH13_5 and display very low similarity to fungal -amylases of family GH13_1. Homologues of these intracellular enzymes are present in the genome sequences of all filamentous fungi studied, including ascomycetes and basidiomycetes. One of the enzymes belonging to this new group, Amy1p from , has recently been functionally linked to the formation of cell wall -glucan. To study the biochemical characteristics of this novel cluster of -amylases, we overexpressed and purified a homologue from , AmyD, and studied its activity product profile with starch and related substrates. AmyD has a relatively low hydrolysing activity on starch (2.2 U mg), producing mainly maltotriose. A possible function of these enzymes in relation to cell wall -glucan synthesis is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008607-0
2007-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/4003.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008607-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: John Wiley & Sons;
  3. Barker S. A., Carrington T. R. 1953; Studies of Aspergillus niger . Part II. Transglycosylation by Aspergillus niger . J Chem Soc 19533588–3593
    [Google Scholar]
  4. Beauvais A., Latgé J. P. 2001; Membrane and cell wall targets in Aspergillus fumigatus . Drug Resist Updat 4:38–49
    [Google Scholar]
  5. Bendtsen J. D., Nielsen H., Von Heijne G., Brunak S. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795
    [Google Scholar]
  6. Bendtsen J. D., Kiemer L., Fausboll A., Brunak S. 2005; Non-classical protein secretion in bacteria. BMC Microbiol 5:58
    [Google Scholar]
  7. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2006; GenBank. Nucleic Acids Res 34:D16–D20
    [Google Scholar]
  8. Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson G. G., Jensen V. J., Petersen S. B., Swift H., Thim L., Woldike H. F. 1990; Calcium binding in α -amylases: an X-ray diffraction study at 2.1 Å resolution of two enzymes from Aspergillus . Biochemistry 29:6244–6249
    [Google Scholar]
  9. Brzozowski A. M., Lawson D. M., Turkenburg J. P., Bisgaard-Frantzen H., Svendsen A., Borchert T. V., Dauter Z., Wilson K. S., Davies G. J. 2000; Structural analysis of a chimeric bacterial α -amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39:9099–9107
    [Google Scholar]
  10. Coutinho P. M., Deleury E., Davies G. J., Henrissat B. 2003; An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317
    [Google Scholar]
  11. Da Lage J. L., Feller G., Janecek S. 2004; Horizontal gene transfer from Eukarya to Bacteria and domain shuffling: the α -amylase model. Cell Mol Life Sci 61:97–109
    [Google Scholar]
  12. Davies G. J., Brzozowski A. M., Dauter Z., Rasmussen M. D., Borchert T. V., Wilson K. S. 2005; Structure of a Bacillus halmapalus family 13 α -amylase, BHA, in complex with an acarbose-derived nonasaccharide at 2.1 Å resolution. Acta Crystallogr D Biol Crystallogr 61:190–193
    [Google Scholar]
  13. Dey G., Palit S., Banerjee R., Maiti B. R. 2002; Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J Ind Microbiol Biotechnol 28:193–200
    [Google Scholar]
  14. Galagan J. E., Calvo S. E., Cuomo C., Ma L. J., Wortman J. R., Batzoglou S., Lee S. I., Basturkmen M., Spevak C. C. other authors 2005; Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae . Nature 438:1105–1115
    [Google Scholar]
  15. Grün C. H., Hochstenbach F., Humbel B. M., Verkleij A. J., Sietsma J. H., Klis F. M., Kamerling J. P., Vliegenthart J. F. 2005; The structure of cell wall α -glucan from fission yeast. Glycobiology 15:245–257
    [Google Scholar]
  16. Guzman-Maldonado H., Paredes-Lopez O. 1995; Amylolytic enzymes and products derived from starch: a review. Crit Rev Food Sci Nutr 35:373–403
    [Google Scholar]
  17. Henrissat B. 1991; A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316
    [Google Scholar]
  18. Henrissat B., Bairoch A. 1996; Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696
    [Google Scholar]
  19. Hochstenbach F., Klis F. M., Van Den Ende H., van Donselaar E., Peters P. J., Klausner R. D. 1998; Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci U S A 95:9161–9166
    [Google Scholar]
  20. James T. Y., Kauff F., Schoch C. L., Matheny P. B., Hofstetter V., Cox C. J., Celio G., Gueidan C., Fraker E. other authors 2006; Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822
    [Google Scholar]
  21. Janecek S. 1994; Sequence similarities and evolutionary relationships of microbial, plant and animal α -amylases. Eur J Biochem 224:519–524
    [Google Scholar]
  22. Janecek S. 1997; α -Amylase family: molecular biology and evolution. Prog Biophys Mol Biol 67:67–97
    [Google Scholar]
  23. Janecek S. 2002; How many conserved sequence regions are there in the α -amylase family?. Biologia ( Bratisl ) 57 ( Suppl. 11 )29–41
    [Google Scholar]
  24. Janecek S., Leveque E., Belarbi A., Haye B. 1999; Close evolutionary relatedness of α -amylases from Archaea and plants. J Mol Evol 48:421–426
    [Google Scholar]
  25. Jeang C. L., Chen L. S., Chen M. Y., Shiau R. J. 2002; Cloning of a gene encoding raw-starch-digesting amylase from a Cytophaga sp. and its expression in Escherichia coli . Appl Environ Microbiol 68:3651–3654
    [Google Scholar]
  26. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with clustal_x. Trends Biochem Sci 23:403–405
    [Google Scholar]
  27. Kanai R., Haga K., Akiba T., Yamane K., Harata K. 2004; Biochemical and crystallographic analyses of maltohexaose-producing amylase from alkalophilic Bacillus sp. 707. Biochemistry 43:14047–14056
    [Google Scholar]
  28. Khoo S. L., Amirul A. A., Kamaruzaman M., Nazalan N., Azizan M. N. 1994; Purification and characterization of α -amylase from Aspergillus flavus . Folia Microbiol ( Praha ) 39:392–398
    [Google Scholar]
  29. Kim T. J., Park C. S., Cho H. Y., Cha S. S., Kim J. S., Lee S. B., Moon T. W., Kim J. W., Oh B. H., Park K. H. 2000; Role of the glutamate 332 residue in the transglycosylation activity of Thermus maltogenic amylase. Biochemistry 39:6773–6780
    [Google Scholar]
  30. Klis F. M., Mol P., Hellingwerf K., Brul S. 2002; Dynamics of cell wall structure in Saccharomyces cerevisiae . FEMS Microbiol Rev 26:239–256
    [Google Scholar]
  31. Kralj S., van Geel-Schutten G. H., Dondorff M. M., Kirsanovs S., van der Maarel M. J., Dijkhuizen L. 2004a; Glucan synthesis in the genus Lactobacillus : isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 150:3681–3690
    [Google Scholar]
  32. Kralj S., van Geel-Schutten G. H., van der Maarel M. J., Dijkhuizen L. 2004b; Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology 150:2099–2112
    [Google Scholar]
  33. Kupfer D. M., Drabenstot S. D., Buchanan K. L., Lai H., Zhu H., Dyer D. W., Roe B. A., Murphy J. W. 2004; Introns and splicing elements of five diverse fungi. Eukaryot Cell 3:1088–1100
    [Google Scholar]
  34. Kuriki T., Imanaka T. 1999; The concept of the α -amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87:557–565
    [Google Scholar]
  35. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  36. Loftus B. J., Fung E., Roncaglia P., Rowley D., Amedeo P., Bruno D., Vamathevan J., Miranda M., Anderson I. J. other authors 2005; The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans . Science 307:1321–1324
    [Google Scholar]
  37. MacGregor E. A., Janecek S., Svensson B. 2001; Relationship of sequence and structure to specificity in the α -amylase family of enzymes. Biochim Biophys Acta 15461–20
    [Google Scholar]
  38. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O. other authors 2005; Genome sequencing and analysis of Aspergillus oryzae . Nature 438:1157–1161
    [Google Scholar]
  39. Machius M., Declerck N., Huber R., Wiegand G. 1998; Activation of Bacillus licheniformis α -amylase through a disorder → order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure 6:281–292
    [Google Scholar]
  40. Machovic M., Janecek S. 2003; The invariant residues in the α -amylase family: just the catalytic triad. Biologia ( Bratisl ) 58:1127–1132
    [Google Scholar]
  41. Marion C. L., Rappleye C. A., Engle J. T., Goldman W. E. 2006; An α -(1,4)-amylase is essential for α -(1,3)-glucan production and virulence in Histoplasma capsulatum . Mol Microbiol 62:970–983
    [Google Scholar]
  42. Matsuura Y., Kusunoki M., Harada W., Kakudo M. 1984; Structure and possible catalytic residues of Taka-amylase A. J Biochem ( Tokyo ) 95:697–702
    [Google Scholar]
  43. Meeuwsen P. J., Vincken J. P., Beldman G., Voragen A. G. 2000; A universal assay for screening expression libraries for carbohydrases. J Biosci Bioeng 89:107–109
    [Google Scholar]
  44. Moreira F. G., Lenartovicz V., Peralta R. M. 2004; A thermostable maltose-tolerant α -amylase from Aspergillus tamarii . J Basic Microbiol 44:29–35
    [Google Scholar]
  45. Morita T., Tanaka N., Hosomi A., Giga-Hama Y., Takegawa K. 2006; An α -amylase homologue, aah3 , encodes a GPI-anchored membrane protein required for cell wall integrity and morphogenesis in Schizosaccharomyces pombe . Biosci Biotechnol Biochem 70:1454–1463
    [Google Scholar]
  46. Nakamura A., Nishimura I., Yokoyama A., Lee D. G., Hidaka M., Masaki H., Kimura A., Chiba S., Uozumi T. 1997; Cloning and sequencing of an α -glucosidase gene from Aspergillus niger and its expression in A. nidulans . J Biotechnol 53:75–84
    [Google Scholar]
  47. Nakamura T., Maeda Y., Tanoue N., Makita T., Kato M., Kobayashi T. 2006; Expression profile of amylolytic genes in Aspergillus nidulans . Biosci Biotechnol Biochem 70:2363–2370
    [Google Scholar]
  48. Nielsen A. D., Fuglsang C. C., Westh P. 2003; Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus α -amylase: a calorimetric investigation. Biochem J 373:337–343
    [Google Scholar]
  49. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B. other authors 2005; Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus . Nature 438:1151–1156
    [Google Scholar]
  50. Page R. D. M. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  51. Pel H. J., de Winde J. H., Archer D. B., Dyer P. S., Hofmann G., Schaap P. J., Turner G., De Vries R. P., Albang R. other authors 2007; Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231
    [Google Scholar]
  52. Petersen K. L., Lehmbeck J., Christensen T. 1999; A new transcriptional activator for amylase genes in Aspergillus . Mol Gen Genet 262:668–676
    [Google Scholar]
  53. Rappleye C. A., Engle J. T., Goldman W. E. 2004; RNA interference in Histoplasma capsulatum demonstrates a role for α -(1,3)-glucan in virulence. Mol Microbiol 53:153–165
    [Google Scholar]
  54. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  55. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  56. Stam M. R., Danchin E. G., Rancurel C., Coutinho P. M., Henrissat B. 2006; Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α -amylase-related proteins. Protein Eng Des Sel 19:555–562
    [Google Scholar]
  57. Steyn A. J., Marmur J., Pretorius I. S. 1995; Cloning, sequence analysis and expression in yeasts of a cDNA containing a Lipomyces kononenkoae α -amylase-encoding gene. Gene 166:65–71
    [Google Scholar]
  58. Tani S., Katsuyama Y., Hayashi T., Suzuki H., Kato M., Gomi K., Kobayashi T., Tsukagoshi N. 2001; Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans . Curr Genet 39:10–15
    [Google Scholar]
  59. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  60. van der Kaaij R. M., Yuan X. L., Franken A., Ram A. F. J., Punt P. J., Maarel M. J. E. C., Dijkhuizen L. 2007; Characterization of two novel, putatively cell wall associated and GPI-anchored, α -glucanotransferase enzymes of Aspergillus niger . Eukaryot Cell 6:1178–1188
    [Google Scholar]
  61. Woranovicz-Barreira S. M., Gorin P. A., Sassaki P. L., Marcelli M. P., Iacomini M. 1999; Galactomannoglucans of lichenized fungi of Cladonia spp.: significance as chemotypes. FEMS Microbiol Lett 181:313–317
    [Google Scholar]
  62. Wu C. H., Apweiler R., Bairoch A., Natale D. A., Barker W. C., Boeckmann B., Ferro S., Gasteiger E., Huang H. other authors 2006; The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res 34:D187–D191
    [Google Scholar]
  63. Yuuki T., Nomura T., Tezuka H., Tsuboi A., Yamagata H., Tsukagoshi N., Udaka S. 1985; Complete nucleotide sequence of a gene coding for heat- and pH-stable α -amylase of Bacillus licheniformis : comparison of the amino acid sequences of three bacterial liquefying α -amylases deduced from the DNA sequences. J Biochem ( Tokyo ) 98:1147–1156
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008607-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008607-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error