1887

Abstract

The evolutionary relationships of , and were studied based on phylogenetic trees for a concatenated dataset of 11 widely distributed proteins, as well as conserved inserts in several proteins. In phylogenetic trees, a close relationship of chlamydiae to was supported by different phylogenetic methods. Although the branched close to the chlamydiae- clade, their specific affiliation to these groups was generally not supported. Results are also presented for two conserved inserts, a 6 aa insert in the lysyl-tRNA synthetase and a 3 aa insert in the RNA polymerase subunit (RpoB), that are uniquely shared by and all available homologues, but which are not found in any of the available or other bacterial homologues. Signature sequences in a number of other proteins [including a large insert (>150 aa) in DNA gyrase B] provide information regarding the branching position of these groups relative to other bacterial phyla. A close and specific relationship of to the species, seen both in phylogenetic trees and by means of uniquely shared inserts in protein sequences, strongly indicates that these two groups of species shared a common ancestor exclusive of all other known bacteria. These results suggest that may be the closest free-living relatives of the parasitic chlamydiae.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009118-0
2007-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2648.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009118-0&mimeType=html&fmt=ahah

References

  1. Castresana J. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552
    [Google Scholar]
  2. Chatterji M., Unniraman S., Maxwell A., Nagaraja V. 2000; The additional 165 amino acids in the B protein of Escherichia coli DNA gyrase have an important role in DNA binding. J Biol Chem 275:22888–22894
    [Google Scholar]
  3. Ciccarelli F. D., Doerks T., von Mering C., Creevey C. J., Snel B., Bork P. 2006; Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287
    [Google Scholar]
  4. Corsaro D., Greub G. 2006; Pathogenic potential of novel chlamydiae and diagnostic approaches to infections due to these obligate intracellular bacteria. Clin Microbiol Rev 19:283–297
    [Google Scholar]
  5. Everett K. D., Bush R. M., Andersen A. A. 1999; Emended description of the order Chlamydiales , proposal of Parachlamydiaceae fam.nov. and Simkaniaceae fam. nov.,each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae , including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440
    [Google Scholar]
  6. Fox A., Rogers J. C., Gilbart J., Morgan S., Davis C. H., Knight S., Wyrick P. B. 1990; Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect Immun 58:835–837
    [Google Scholar]
  7. Garrity G. M., Bell J. A., Lilburn T. G. 2005; The Revised Road Map to the Manual. In Bergey's Manual of Systematic Bacteriology , vol. 2, part A, Introductory Essays pp 159–220 Edited by Brenner D. J., Krieg N. R., T J. Staley. Springer; New York:
    [Google Scholar]
  8. Glockner F. O., Kube M., Bauer M., Teeling H., Lombardot T., Ludwig W., Gade D., Beck A., Borzym K. other authors: 2003; Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci U S A 100:8298–8303
    [Google Scholar]
  9. Griffiths E., Gupta R. S. 2001; The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology 147:2611–2622
    [Google Scholar]
  10. Griffiths E., Gupta R. S. 2004; Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales . Int Microbiol 7:41–52
    [Google Scholar]
  11. Griffiths E., Petrich A., Gupta R. S. 2005; Conserved indels in essential proteins that are distinctive characteristics of Chlamydiales and provide novel means for their identification. Microbiology 151:2647–2657
    [Google Scholar]
  12. Gupta R. S., Griffiths E. 2006; Chlamydiae-specific proteins and indels: novel tools for studies. Trends Microbiol 14:527–535
    [Google Scholar]
  13. Gupta R. S., Sneath P. H. A. 2006; Application of the character compatibility approach to generalized molecular sequence data: branching order of the proteobacterial subdivisions. J Mol Evol 64:90–100
    [Google Scholar]
  14. Horn M., Collingro A., Schmitz-Esser S., Beier C. L., Purkhold U., Fartmann B., Brandt P., Nyakatura G. J., Droege M. other authors 2004; Illuminating the evolutionary history of chlamydiae. Science 304:728–730
    [Google Scholar]
  15. Jenkins C., Fuerst J. A. 2001; Phylogenetic analysis of evolutionary relationships of the planctomycete division of the domain Bacteria based on amino acid sequences of elongation factor Tu. J Mol Evol 52:405–418
    [Google Scholar]
  16. Kalman S., Mitchell W., Marathe R., Lammel C., Fan J., Hyman R. W., Olinger L., Grimwood J., Davis R. W., Stephens R. S. 1999; Comparative genomes of Chlamidia pneumoniae and C. trachomatis . Nat Genet 21:385–389
    [Google Scholar]
  17. Konig E., Schlesner H., Hirsch P. 1984; Cell wall studies on budding bacteria of the Planctomyces/Pasteuria group and on a Prosthecomicrobium sp. Arch Microbiol 138:200–205
    [Google Scholar]
  18. Park J. S., Marr M. T., Roberts J. W. 2002; E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109:757–767
    [Google Scholar]
  19. Read T. D., Brunham R. C., Shen C., Gill S. R., Heidelberg J. F., White O., Hickey E. K., Peterson J., Utterback T. other authors 2000; Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406
    [Google Scholar]
  20. Read T. D., Myers G. S. A., Brunham R. C., Nelson W. C., Paulsen I. T., Heidelberg J., Holtzapple E., Khouri H., Federova N. B. other authors 2003; Genome sequence of Chlamydophila caviae ( Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31:2134–2147
    [Google Scholar]
  21. Schachter J., Stamm W. E. 1999; Chlamydia . In Manual of Clinical Microbiology pp 795–806 Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Schelsner H., Jenkins C., Staley J. T. 2006; The phylum Verrucomicrobia: a phylogenetically heterogeneous bacterial group. In The Prokaryotes pp 881–896 Edited by Dworkin M., Falkow S., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  23. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L. other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759
    [Google Scholar]
  24. Strous M., Pelletier E., Mangenot S., Rattei T., Lehner A., Taylor M. W., Horn M., Daims H., Bartol-Mavel D. other authors 2006; Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794
    [Google Scholar]
  25. Teeling H., Lombardot T., Bauer M., Ludwig W., Glockner F. O. 2004; Evaluation of the phylogenetic position of the planctomycete ‘ Rhodopirellula baltica ' SH 1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees. Int J Syst Evol Microbiol 54:791–801
    [Google Scholar]
  26. Wagner M., Horn M. 2006; The Pl/anctomycetes , Verrucomicrobia , Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249
    [Google Scholar]
  27. Ward N. L., Rainey F. A., Hedlund B. P., Staley J. T., Ludwig W., Stackebrandt E. 2000; Comparative phylogenetic analyses of members of the order Planctomycetales and the division Verrucomicrobia : 23S rRNA gene sequence analysis supports the 16S rRNA gene sequence-derived phylogeny. Int J Syst Evol Microbiol 50:1965–1972
    [Google Scholar]
  28. Ward N., Staley J. T., Fuerst J. A., Giovannoni S., Schlesner H., Stackebrandt E. 2006 The order Planctomycetales, including the genera Planctomycetes ,Pirellula , Gemmata , Isosphaera and the Candidatus genera Brocadia , Kuenenia and Scalindua . In The Prokaryotes pp 757–793 Edited by Dworkin M., Falkow S., Schleifer E, Stackebrandt K. H. New York: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009118-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009118-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error