1887

Abstract

Sequencing of the DNA region on the left fringe of the pimaricin gene cluster revealed the presence of a 579 bp gene, , whose deduced product (192 aa) was found to have amino acid sequence homology with bacterial regulatory proteins. Database comparisons revealed that PimM combines an N-terminal PAS domain with a C-terminal helix–turn–helix (HTH) motif of the LuxR type. Gene replacement of from the chromosome with a mutant version lacking the HTH DNA-binding domain resulted in complete loss of pimaricin production, suggesting that PimM is a positive regulator of pimaricin biosynthesis. Complementation of the Δ mutant with a single copy of integrated into the chromosome restored pimaricin production. The insertion of a single copy of , with its own promoter, into the wild-type strain boosted pimaricin production. Gene expression analyses in wild-type and Δ by reverse transcriptase PCR (RT-PCR) of the pimaricin gene cluster revealed the targets for the PimM regulatory protein. According to these analyses, the genes responsible for initiation and first elongation cycles of polyketide chain extension are among the major targets for regulation. Other genes are differentially affected. Interestingly, our results indicate that PimM plays its regulatory role independently of PimR, the first pathway-specific regulator of pimaricin biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009126-0
2007-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/9/3174.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009126-0&mimeType=html&fmt=ahah

References

  1. Antón N., Mendes M. V., Martín J. F., Aparicio J. F. 2004; Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. J Bacteriol 186:2567–2575
    [Google Scholar]
  2. Aparicio J. F., Colina A. J., Ceballos E., Martín J. F. 1999; The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin: a new polyketide synthase organization encoded by two subclusters separated by functionalization genes. J Biol Chem 274:10133–10139
    [Google Scholar]
  3. Aparicio J. F., Fouces R., Mendes M. V., Olivera N., Martín J. F. 2000; A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. Chem Biol 7:895–905
    [Google Scholar]
  4. Aparicio J. F., Caffrey P., Gil J. A., Zotchev S. B. 2003; Polyene antibiotic biosynthesis gene clusters. Appl Microbiol Biotechnol 61:179–188
    [Google Scholar]
  5. Aparicio J. F., Mendes M. V., Antón N., Recio E., Martín J. F. 2004; Polyene macrolide antibiotic biosynthesis. Curr Med Chem 11:1645–1656
    [Google Scholar]
  6. Bibb M. J. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215
    [Google Scholar]
  7. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  8. Brautaset T., Sekurova O. N., Sletta H., Ellingsen T. E., Strom A. R., Valla S., Zotchev S. B. 2000; Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403
    [Google Scholar]
  9. Carmody M., Byrne B., Murphy B., Breen C., Lynch S., Flood E., Finnan S., Caffrey P. 2004; Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115
    [Google Scholar]
  10. Champness W. C., Chater K. F. 1994; Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp. In Regulation of Bacterial Differentiation pp 61–93 Edited by Piggot P., Moran C. P., Youngman P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Chater K. F., Bruton C. J., Suárez J. E. 1981; Restriction mapping of the DNA of the Streptomyces temperate phage φC31 and its derivatives. Gene 14:183–194
    [Google Scholar]
  12. Chen S., Huang X., Zhou X., Bai L., He J., Jeong K. J., Lee S. Y., Deng Z. 2003; Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10:1065–1076
    [Google Scholar]
  13. Enríquez L. L., Mendes M. V., Antón N., Tunca S., Guerra S. M., Martín J. F., Aparicio J. F. 2006; An efficient gene transfer system for the pimaricin producer Streptomyces natalensis. FEMS Microbiol Lett 257:312–318
    [Google Scholar]
  14. Foussard M., Cabantous S., Pedelacq J., Guillet V., Tranier S., Mourey L., Birck C., Samama J. 2001; The molecular puzzle of two-component signaling cascades. Microbes Infect 3:417–424
    [Google Scholar]
  15. Hefti M. H., Francoijs K.-J., de Vries S. C., Dixon R., Vervoort J. 2004; The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem 271:1198–1208
    [Google Scholar]
  16. Hoch J. A. 2000; Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170
    [Google Scholar]
  17. Huang J., Shi J., Molle V., Sohlberg B., Weaver D., Bibb M. J., Karoonuthaisiri N., Lih C., Kao C. M. other authors 2005; Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287
    [Google Scholar]
  18. Hutchings M. I., Hoskisson P. A., Chandra G., Buttner M. J. 2004; Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2. Microbiology 150:2795–2806
    [Google Scholar]
  19. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S. 2003; Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531
    [Google Scholar]
  20. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  21. Kim B. S., Cropp T. A., Beck B. J., Sherman D. H., Reynolds K. A. 2002; Biochemical evidence for an editing role of thioesterase II in the biosynthesis of the polyketide pikromycin. J Biol Chem 277:48028–48034
    [Google Scholar]
  22. Leskiw B. K., Lawlor E. J., Fernández-Abalos J. M., Chater K. F. 1991; TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants. Proc Natl Acad Sci U S A 88:2461–2465
    [Google Scholar]
  23. Martín J. F. 2004; Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 186:5197–5201
    [Google Scholar]
  24. Martín J. F., Gutiérrez S., Aparicio J. F. 2000; Secondary metabolites. In Encyclopedia of Microbiology, 2nd edn. vol4 pp. 213–236 Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  25. Mendes M. V., Recio E., Fouces R., Luiten R., Martin J. F., Aparicio J. F. 2001; Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chem Biol 8:635–644
    [Google Scholar]
  26. Mendes M. V., Antón N., Martín J. F., Aparicio J. F. 2005; Characterization of the polyene macrolide P450 epoxidase from Streptomyces natalensis that converts deepoxypimaricin into pimaricin. Biochem J 386:57–62
    [Google Scholar]
  27. Mendes M. V., Tunca S., Antón N., Recio E., Sola-Landa A., Aparicio J. F., Martín J. F. 2007a; The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng 9:217–227
    [Google Scholar]
  28. Mendes M. V., Recio E., Antón N., Guerra S. M., Santos-Aberturas J., Martín J. F., Aparicio J. F. 2007b; Cholesterol oxidases act as signalling proteins for the biosynthesis of the polyene macrolide pimaricin. Chem Biol 14:279–290
    [Google Scholar]
  29. Ponting C. P., Aravind L. 1997; PAS: a multifunctional domain family comes to light. Curr Biol 7:R673–R678
    [Google Scholar]
  30. Recio E., Colina A., Rumbero A., Aparicio J. F., Martin J. F. 2004; PI factor, a novel type quorum sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem 279:41586–41593
    [Google Scholar]
  31. Recio E., Aparicio J. F., Rumbero A., Martín J. F. 2006; Glycerol, ethylene glycol and propanediol elicit pimaricin biosynthesis in the PI-factor defective strain Streptomyces natalensis npi287 and increase polyene production in several wild-type actinomycetes. Microbiology 152:3147–3156
    [Google Scholar]
  32. Rodicio M. R., Bruton C. J., Chater K. F. 1985; New derivatives of the Streptomyces temperate phage φC31 useful for the cloning and functional analysis of Streptomyces DNA. Gene 34:283–292
    [Google Scholar]
  33. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  34. Sekurova O. N., Brautaset T., Sletta H., Borgos S. E. F., Jakobsen O. M., Ellingsen T. E., Strom A. R., Valla S., Zotchev S. B. 2004; In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354
    [Google Scholar]
  35. Sola-Landa A., Moura R. S., Martín J. F. 2003; The two component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A 100:6133–6138
    [Google Scholar]
  36. Sola-Landa A., Rodríguez-García A, Franco-Domínguez E, Martín J. F. 2005; Binding of PhoP to promoters of phosphate regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol Microbiol 56:1373–1385
    [Google Scholar]
  37. Stevens A. M., Dolan K. M., Greenberg E. P. 1994; Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci U S A 91:12619–12623
    [Google Scholar]
  38. Taylor B. L., Zhulin I. B. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506
    [Google Scholar]
  39. West A. H., Stock A. M. 2001; Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009126-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009126-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error