1887

Abstract

The production of several bacteriocins in lactic acid bacteria is regulated by inducer peptide pheromones that specifically interact with their cognate bacterial receptor. These peptide pheromones are between 19 and 27 aa long and contain a conserved (V/I)-X-X-X-F sequence followed by positively charged residues in the C-terminal domain. CbaX and EntF are peptide pheromones that share similarity and are involved in the production of carnobacteriocin A in LV17A and enterocins A and B in CTC492, respectively. CbaX, EntF and two hybrids, CbaX : : EntF and EntF : : CbaX, were tested for pheromone activity in LV17A and CTC492. EntF and EntF : : CbaX only induced bacteriocin production in CTC492, whereas CbaX and CbaX : : EntF induced carnobacteriocin A production in LV17A and, at high concentrations, also cross-induced enterocin production in CTC492. Various peptide fragments of CbaX and EntF were made for further structure–function analysis. The C-terminal fragments, but not the N-terminal fragments, were able to effect bacteriocin induction. The 10-mer EntF(16–25), derived from the C-terminal domain of EntF, showed pheromone activity in LV17A. In contrast, the C-terminal 9-mer of CbaX, CbaX(16–24), inhibited pheromone activity in both LV17A and CTC492. EntF(16–25) and CbaX(16–24) differ by two amino acids. Changing either one of these abolished pheromone activity as well as the ability to inhibit pheromone activity. These results indicate that the C-terminal domain of these peptide pheromones interacts relatively non-specifically with the receptor, and that induction is greatly facilitated by the N-terminal domain that recognizes specifically its cognate receptor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009183-0
2007-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3660.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009183-0&mimeType=html&fmt=ahah

References

  1. Abbas Hilmi H. T., Kylä-Nikkilä K., Ra R., Saris P. E. J. 2006; Nisin induction without nisin secretion. Microbiology 152:1489–1496
    [Google Scholar]
  2. Ahn C., Stiles M. E. 1992; Mobilization and expression of bacteriocin plasmids from Carnobacterium piscicola isolated from meat. J Appl Bacteriol 73:217–228
    [Google Scholar]
  3. Axelsson L., Holck A. 1995; The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137
    [Google Scholar]
  4. Bassler B. L., Losick R. 2006; Bacterially speaking. Cell 125:237–246
    [Google Scholar]
  5. Dai Y. Q., Whittal R. M., Li L. 1996; Confocal fluorescence microscopic imaging for investigating the analyte distribution in MALDI matrices. Anal Chem 68:2494–2500
    [Google Scholar]
  6. Dai Y., Whittal R. M., Li L. 1999; Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem 71:1087–1091
    [Google Scholar]
  7. Diep D. B., Håvarstein L. S., Nes I. F. 1995; A bacteriocin-like peptide induces bacteriocin synthesis in L. plantarum C11. Mol Microbiol 18:631–639
    [Google Scholar]
  8. Eijsink V. G. H., Brurberg M. B., Middelhoven P. H., Nes I. F. 1996; Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237
    [Google Scholar]
  9. Franz C. M. A. P., Schillinger U., Holzapfel W. H. 1996; Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255–270
    [Google Scholar]
  10. Franz C. M. A. P., van Belkum M. J., Worobo R. W., Vederas J. C., Stiles M. E. 2000; Characterization of the genetic locus responsible for production and immunity of carnobacteriocin A: the immunity gene confers cross-protection to enterocin B. Microbiology 146:621–631
    [Google Scholar]
  11. Franz C. M. A. P., van Belkum M. J., Holzapfel W. H., Abriouel H., Gálvez A. 2007; Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310
    [Google Scholar]
  12. Gursky L. J., Martin N. I., Derksen D. J., van Belkum M. J., Kaur K., Vederas J. C., Stiles M. E., McMullen L. M. 2006; Production of piscicolin 126 by Carnobacterium maltaromaticum UAL26 is controlled by temperature and induction peptide concentration. Arch Microbiol 186:317–325
    [Google Scholar]
  13. Håvarstein L. S., Diep D. B., Nes I. F. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240
    [Google Scholar]
  14. Johnsborg O., Diep D. B., Nes I. F. 2003; Structural analysis of the peptide pheromone receptor PlnB, a histidine protein kinase from Lactobacillus plantarum. J Bacteriol 185:6913–6920
    [Google Scholar]
  15. Kaiser E., Colescott R. L., Bossinger C. D., Cook P. I. 1970; Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598
    [Google Scholar]
  16. Keller L., Surette M. G. 2006; Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258
    [Google Scholar]
  17. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–86
    [Google Scholar]
  18. Kleerebezem M., Quadri L. E. 2001; Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22:1579–1596
    [Google Scholar]
  19. Kleerebezem M., Quadri L. E. N., Kuipers O. P., de Vos W. M. 1997; Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904
    [Google Scholar]
  20. Kleerebezem M., Kuipers O. P., de Vos W. M., Stiles M. E., Quadri L. E. N. 2001; A two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signaling peptides and one sensor-transmitter. Peptides 22:1597–1601
    [Google Scholar]
  21. Kristiansen P. E., Fimland G., Mantzilas D., Nissen-Meyer J. 2005; Structure and mode of action of the membrane-permeabilizing antimicrobial peptide pheromone plantaricin A. J Biol Chem 280:22945–22950
    [Google Scholar]
  22. Morrow J. A., Segall M. L., Lund-Katz S., Phillips M. C., Knapp M., Rupp B., Weigraber K. H. 2000; Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39:11657–11666
    [Google Scholar]
  23. Mutter M., Nefzi A., Sato T., Sun X., Wahl F., Wöhr T. 1995; Pseudo-prolines (psi Pro) for accessing ‘inaccessible’ peptides. Pept Res 8:145–153
    [Google Scholar]
  24. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128
    [Google Scholar]
  25. Nilsen T., Nes I. F., Holo H. 1998; An exported inducer peptide regulates bacteriocin production in Enterococcus faecium CTC492. J Bacteriol 180:1848–1854
    [Google Scholar]
  26. Reading N. C., Sperandio V. 2006; Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11
    [Google Scholar]
  27. Rohde B. H., Quadri L. E. N. 2006; Functional characterization of a three-component regulatory system involved in quorum sensing-based regulation of peptide antibiotic production in Carnobacterium maltaromaticum. BMC Microbiol 6:93
    [Google Scholar]
  28. Saucier L., Poon A., Stiles M. E. 1995; Induction of bacteriocin in Carnobacterium piscicola LV 17. J Appl Bacteriol 78:684–690
    [Google Scholar]
  29. van Belkum M. J., Stiles M. E. 2000; Nonlantibiotic antibacterial peptides from lactic acid bacteria. Nat Prod Rep 17:323–335
    [Google Scholar]
  30. van Belkum M. J., Worobo R. W., Stiles M. E. 1997; Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23:1293–1301
    [Google Scholar]
  31. Vaughan A., Eijsink V. G. H., van Sinderen D. 2003; Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69:7194–7203
    [Google Scholar]
  32. Worobo R. W., Henkel T., Sailer M., Roy K. L., Vederas J. C., Stiles M. E. 1994; Characteristics and genetic determinant of a hydrophobic peptide bacteriocin, carnobacteriocin A, produced by Carnobacterium piscicola LV17A. Microbiology 140:517–526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009183-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009183-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error