1887

Abstract

Alcohol dehydrogenase 1 (Adh1)p catalyses the conversion of acetaldehyde to ethanol, regenerating NAD. In , Adh1p is oxidatively modified during ageing and, consequently, its activity becomes reduced. To analyse whether maintaining this activity is advantageous for the cell, a yeast strain with an extra copy of the gene (2×) was constructed, and the effects on chronological and replicative ageing were analysed. The strain showed increased survival in stationary phase (chronological ageing) due to induction of antioxidant enzymes such as catalase and superoxide dismutases. In addition, 2× cells displayed an increased activity of silent information regulator 2 (Sir2)p, an NAD-dependent histone deacetylase, due to a higher NAD/NADH ratio. As a consequence, a 30 % extension in replicative life span was observed. Taken together, these results suggest that the maintenance of enzymes that participate in NAD/NADH balancing is important to chronological and replicative life-span parameters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009340-0
2007-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3667.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009340-0&mimeType=html&fmt=ahah

References

  1. Aguilaniu H., Gustafsson L., Rigoulet M., Nyström T. 2003; Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753
    [Google Scholar]
  2. Anderson R. M., Bitterman K. J., Wood J. G., Medvedik O., Cohen H., Lin S. S., Manchester J. K., Gordon J. I., Sinclair D. A. 2002; Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 277:18881–18890
    [Google Scholar]
  3. Anderson R. M., Latorre-Esteves M., Neves A. R., Lavu S., Medvedik O., Taylor C., Howitz K. T., Santos H., Sinclair D. A. 2003; Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 302:2124–2126
    [Google Scholar]
  4. Aparicio O. M., Gottschling D. E. 1994; Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev 8:1133–1146
    [Google Scholar]
  5. Ashrafi K., Lin S. S., Manchester J. K., Gordon J. I. 2000; Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14:1872–1885
    [Google Scholar]
  6. Bakker B. M., Overkamp K. M., van Maris A. J. A., Kotter P., Luttik M. A. H., van Dijken J. P., Pronk J. T. 2001; Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37
    [Google Scholar]
  7. Bedalov A., Gatbonton T., Irvine W. P., Gottschling D. E., Simon J. A. 2001; Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci U S A 98:15113–15118
    [Google Scholar]
  8. Bitterman K. J., Anderson R. M., Cohen H. Y., Latorre-Esteves M., Sinclair D. A. 2002; Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277:45099–45107
    [Google Scholar]
  9. Bitterman K. J., Medvedik O., Sinclair D. A. 2003; Longevity regulation in Saccharomyces cerevisiae: linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67:376–399
    [Google Scholar]
  10. Bordone L., Guarente L. 2005; Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305
    [Google Scholar]
  11. Brown G. C., Cooper C. E. (editors) 1995 Bioenergetics, a Practical Approach Oxford: IRL Press;
  12. Brunet A., Sweeney L. B., Sturgill J. F., Chua K. F., Greer P. L., Lin Y., Tran H., Ross S. E., Mostoslavsky R. other authors 2004; Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015
    [Google Scholar]
  13. Cabiscol E., Belli G., Tamarit J., Echave P., Herrero E., Ros J. 2002; Mitochondrial Hsp60, resistance to oxidative stress, and the labile iron pool are closely connected in Saccharomyces cerevisiae. J Biol Chem 277:44531–44538
    [Google Scholar]
  14. Delaunay A., Isnard A. D., Toledano M. B. 2000; H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J 19:5157–5166
    [Google Scholar]
  15. Fabrizio P., Longo V. D. 2003; The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81
    [Google Scholar]
  16. Fabrizio P., Pozza F., Pletcher S. D., Gendron C. M., Longo V. D. 2001; Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290
    [Google Scholar]
  17. Fabrizio P., Battistella L., Vardavas R., Gattazzo C., Liou L. L., Diaspro A., Dossen J. W., Gralla E. B., Longo V. D. 2004; Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166:1055–1067
    [Google Scholar]
  18. Fabrizio P., Gattazzo C., Battistella L., Wei M., Cheng C., McGrew K., Longo V. D. 2005; Sir2 blocks extreme life-span extension. Cell 123:655–667
    [Google Scholar]
  19. Gallego C., Garí E., Colomina N., Herrero E., Aldea M. 1997; The Cln3 cyclin is down regulated by transcriptional repression and regulation during the G1 arrest caused by nitrogen deprivation in budding yeast. EMBO J 16:7196–7206
    [Google Scholar]
  20. Giannakou M. E., Partridge L. 2004; The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 14:408–412
    [Google Scholar]
  21. Godon C., Lagniel G., Lee J., Buhler J. M., Kieffer S., Perrot M., Boucherie H., Toledano M. B., Labarre J. 1998; The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273:22480–22489
    [Google Scholar]
  22. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A. 1990; Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762
    [Google Scholar]
  23. Grubisha O., Smith B. C., Denu J. M. 2005; Small molecule regulation of Sir2 protein deacetylases. FEBS J 272:4607–4616
    [Google Scholar]
  24. Grune T., Jung T., Merker K., Davies K. J. 2004; Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530
    [Google Scholar]
  25. Harman D. 1981; The aging process. Proc Natl Acad Sci U S A 78:7124–7128
    [Google Scholar]
  26. Harris N., Costa V., MacLean M., Mollapour M., Moradas-Ferreira P., Piper P. W. 2003; Mnsod overexpression extends the yeast chronological (G0) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34:1599–1606
    [Google Scholar]
  27. Harris N., Bachler M., Costa V., Mollapour M., Moradas-Ferreira P., Piper P. W. 2005; Overexpressed Sod1p acts either to reduce or to increase the lifespans and stress resistance of yeast, depending on whether it is Cu2+-deficient or an active Cu,Zn-superoxide dismutase. Aging Cell 4:41–52
    [Google Scholar]
  28. Hasan R., Leroy C., Isnard A. D., Labarre J., Boy-Marcotte E., Toledano M. B. 2002; The control of the yeast H2O2 response by the Msn2/4 transcription factors. Mol Microbiol 45:233–241
    [Google Scholar]
  29. Herman P. K. 2002; Stationary phase in yeast. Curr Opin Microbiol 5:602–607
    [Google Scholar]
  30. Jackson M. D., Schmidt M. T., Oppenheimer N. J., Denu J. M. 2003; Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J Biol Chem 278:50985–50998
    [Google Scholar]
  31. Jakubowski W., Bilinski T., Bartosz G. 2000; Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med 28:659–664
    [Google Scholar]
  32. Kaeberlein M., McVey M., Guarente L. 1999; The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580
    [Google Scholar]
  33. Kaeberlein M., Kirkland K. T., Fields S., Kennedy B. K. 2004; Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:E296
    [Google Scholar]
  34. Kaiser C., Michaelis S., Michell A. (editors) 1994 Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  35. Kobayashi Y., Furukawa-Hibi Y., Chen C., Horio Y., Isobe K., Ikeda K., Motoyama N. 2005; SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med 16:237–243
    [Google Scholar]
  36. Kops G. J., Dansen T. B., Polderman P. E., Saarloos I., Wirtz K. W., Coffer P. J., Huang T. T., Bos J. L., Medema R. H., Burgering B. M. 2002; Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321
    [Google Scholar]
  37. Krems B., Charizanis C., Entian K. D. 1996; The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 29:327–334
    [Google Scholar]
  38. Kuge S., Jones N. 1994; YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664
    [Google Scholar]
  39. Levine R. L. 2002; Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796
    [Google Scholar]
  40. Lin S. J., Guarente L. 2003; Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246
    [Google Scholar]
  41. Lin S. J., Kaeberlein M., Andalis A. A., Sturtz L. A., Defossez P. A., Culotta V. C., Fink G. R., Guarente L. 2002; Calorie restriction extends Saccharomyces cerevisiae life-span by increasing respiration. Nature 418:344–348
    [Google Scholar]
  42. Lin S. J., Ford E., Haigis M., Liszt G., Guarente L. 2004; Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18:12–16
    [Google Scholar]
  43. Luk E. E., Culotta V. C. 2001; Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. J Biol Chem 276:47556–47562
    [Google Scholar]
  44. MacLean M., Harris N., Piper P. W. 2001; Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast 18:499–509
    [Google Scholar]
  45. Martinez-Pastor M. T., Marchler G., Schüller C. S., Marchler-Bauer A., Ruis H., Estruch F. 1996; The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235
    [Google Scholar]
  46. Nemoto S., Finkel T. 2002; Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452
    [Google Scholar]
  47. Nyström T. 2005; Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317
    [Google Scholar]
  48. Piper P. W. 1995; The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett 134:121–127
    [Google Scholar]
  49. Reverter-Branchat G., Cabiscol E., Tamarit J., Ros J. 2004; Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J Biol Chem 279:31983–31989
    [Google Scholar]
  50. Rodriguez-Manzaneque M. T., Ros J., Cabiscol E., Sorribas A., Herrero E. 1999; Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol 19:8180–8190
    [Google Scholar]
  51. Schmitt A. P., McEntee K. 1996; Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777–5782
    [Google Scholar]
  52. Sinclair D. A. 2002; Paradigms and pitfalls of yeast longevity research. Mech Ageing Dev 123:857–867
    [Google Scholar]
  53. Sinclair D. A., Guarente L. 1997; Extrachromosomal rDNA circles – a cause of aging in yeast. Cell 91:1033–1042
    [Google Scholar]
  54. Smith J. S., Boeke J. D. 1997; An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254
    [Google Scholar]
  55. Sohal R. S., Weindruch R. 1996; Oxidative stress, caloric restriction, and aging. Science 273:59–63
    [Google Scholar]
  56. Stadtman E. R. 1992; Protein oxidation and aging. Science 257:1220–1224
    [Google Scholar]
  57. Stadtman E. R., Levine R. L. 2000; Protein oxidation. Ann N Y Acad Sci 899:191–208
    [Google Scholar]
  58. Stadtman E. R., Oliver C. N. 1991; Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266:2005–2008
    [Google Scholar]
  59. Tamarit J., Irazusta V., Moreno-Cermeño A., Ros J. 2006; Colorimetric assay for the quantitation of iron in yeast. Anal Biochem 351:149–151
    [Google Scholar]
  60. Van der Horst A., Tertoolen L. G. J., Vries-Smits L. M. M., Frye R. A., Medema R. H., Burgering B. M. T. 2004; FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1 . J Biol Chem 279:28873–28879
    [Google Scholar]
  61. van Voorst F. V., Houghton-Larsen J., Jonson L., Kielland-Brandt M. C., Brandt A. 2006; Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23:351–359
    [Google Scholar]
  62. Williamson V. M., Bennetzen J., Young E. T., Nasmyth K., Hall B. D. 1980; Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature 283:214–216
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009340-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009340-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error