1887

Abstract

The anaerobic utilization of -ascorbate by gene products of the regulon in has been widely documented. Under aerobic conditions, we have shown that this metabolism is only functional in the presence of casein acid hydrolysate. Transcriptional fusions and proteomic analysis indicated that both the regulon and the operon are required for the aerobic utilization of this compound. The aerobic dissimilation of -ascorbate shares the function of three paralogous proteins, UlaD/YiaQ, UlaE/YiaR and UlaF/YiaS, which encode a decarboxylase, a 3-epimerase and a 4-epimerase, respectively. In contrast, -ascorbate enters the cells through the encoded phosphotransferase transport system, but it is not carried by the encoded ABC transporter. Proteomic analysis also indicated enhanced expression of the alkyl hydroperoxide reductase encoded by the gene, suggesting a response to oxidative stress generated during the aerobic metabolism of -ascorbate. Control of expression by the OxyR global regulator in response to -ascorbate concentration is consistent with the formation of hydrogen peroxide under our experimental conditions. The presence of certain amino acids such as proline, threonine or glutamine in the culture medium allowed aerobic -ascorbate utilization by cells. This effect could be explained by the ability of these amino acids to allow operon induction by -ascorbate, thus increasing the metabolic flux of -ascorbate dissimilation. Alternatively, these amino acids may slow the rate of -ascorbate oxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009613-0
2007-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/10/3399.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009613-0&mimeType=html&fmt=ahah

References

  1. Altuvia S., Almiron M., Huisman G., Kolter R., Storz G. 1994; The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13:265–272
    [Google Scholar]
  2. Aslund F., Zheng M., Beckwith J., Storz G. 1999; Regulation of OxyR transcription factor by hydrogen peroxide and intracellular thiol-disulfide status. Proc Natl Acad Sci U S A 96:6161–6165
    [Google Scholar]
  3. Badrakhan C. D., Petrat F., Holzhauser M., Fuchs A., Lomonosova E. E., de Groot H., Kirsh M. 2004; The methanol method for the quantification of ascorbic acid and dehydroascorbic acid in biological samples. J Biochem Biophys Methods 58:207–218
    [Google Scholar]
  4. Blokhina O., Virolainen E., Fagerstedt K. V. 2003; Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond 91:179–194
    [Google Scholar]
  5. Boronat A., Aguilar J. 1979; Rhamnose-induced propanediol oxidoreductase in Escherichia coli : purification, properties, and comparison with the fucose-induced enzyme. J Bacteriol 140:320–326
    [Google Scholar]
  6. Campos E., Aguilar J., Baldoma L., Badia J. 2002; The gene yjfQ encodes the repressor of the yjfR-X regulon ( ula ), which is involved in l-ascorbate metabolism in Escherichia coli . J Bacteriol 184:6065–6068
    [Google Scholar]
  7. Campos E., Baldoma L., Aguilar J., Badia J. 2004; Regulation of expression of the divergent ulaG and ulaABCDEF operon involved in l-ascorbate dissimilation in Escherichia coli . J Bacteriol 186:1720–1728
    [Google Scholar]
  8. De Koning H., Diallinas G. 2000; Nucleobase transporters. Mol Membr Biol 17:75–94
    [Google Scholar]
  9. Dekker A. O., Dickinson R. G. 1940; Oxidation of ascorbic acid by oxygen with cupric ion as catalyst. J Am Chem Soc 62:2165–2171
    [Google Scholar]
  10. Demple B. 1991; Regulation of bacterial oxidative stress genes. Annu Rev Genet 25:315–337
    [Google Scholar]
  11. Elliott T. 1992; A method for constructing single copy lac fusions in Salmonella typhimurium and its application to the hemA-prfA operon. J Bacteriol 174:245–253
    [Google Scholar]
  12. Esselen W. B., Fuller J. E. 1939; The oxidation of ascorbic acid as influenced by intestinal bacteria. J Bacteriol 37:501–521
    [Google Scholar]
  13. Greenberg J. T., Demple B. 1988; Overproducing of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in o xyR mutants. EMBO J 7:2611–2617
    [Google Scholar]
  14. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197
    [Google Scholar]
  15. Ibañez E., Campos E., Baldomà L., Aguilar J., Badia J. 2000a; Regulation of expression of the yiaKLMNOPQRS operon for carbohydrate utilization in Escherichia coli : involvement of the main transcriptional factors. J Bacteriol 182:4617–4624
    [Google Scholar]
  16. Ibañez E., Gimenez R., Pedraza T., Baldoma L., Aguilar J., Badia J. 2000b; Role of the yiaR and yiaS genes of Escherichia coli in metabolism of endogenously formed l-xylulose. J Bacteriol 182:4625–4627
    [Google Scholar]
  17. Imlay J. A. 2003; Pathways of oxidative damage. Annu Rev Microbiol 57:395–418
    [Google Scholar]
  18. Kärkönen A., Fry S. C. 2006; Effect of ascorbate and its oxidation products on H2O2 production in cell-suspension cultures of Picea abies and in the absence of cells. J Exp Bot 57:1633–1644
    [Google Scholar]
  19. Kaul S., Sharma S. S., Mehta I. K. 2006; Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids
    [Google Scholar]
  20. Lin E. C. C. 1976; Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578
    [Google Scholar]
  21. Meneghini R. 1997; Iron, homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23:783–792
    [Google Scholar]
  22. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Moslen M. T. 1992; Protection against free radical-mediated injury. . In Free Radical Mechanisms of Tissue Injury pp 203–216 Edited by Moslen M. T., Smith C. V. New York: CRC Press;
    [Google Scholar]
  24. Nunoshiba T., Hidalgo E., Amabile-Cuevas C. F., Demple B. 1992; Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol 174:6054–6060
    [Google Scholar]
  25. Pomposiello P. J., Demple B. 2001; Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol 19:109–114
    [Google Scholar]
  26. Richter H. E., Loewen P. C. 1981; Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem Biophys Res Commun 100:1039–1046
    [Google Scholar]
  27. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Schellhorn H. E., Hassan H. M. 1988; Transcriptional regulation of katE in Escherichia coli K-12. J Bacteriol 170:4286–4292
    [Google Scholar]
  29. Seaver L. C., Imlay J. A. 2001; Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli . J Bacteriol 183:7173–7181
    [Google Scholar]
  30. Semsey S., Andersson A. M. C., Krishna S., Jensen M. H., Masse E., Sneppen K. 2006; Genetic regulation of fluxes: iron homeostasis of Escherichia coli . Nucleic Acids Res 34:4960–4967
    [Google Scholar]
  31. Silhavy T. J., Berman M. L., Enquist L. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  32. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96
    [Google Scholar]
  33. Stadtman E. R. 1993; Oxidation of free amino acids and amino residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821
    [Google Scholar]
  34. Storz G., Taraglia L. A., Ames B. N. 1990; Transcriptional regulator for oxidative stress-inducible genes: direct activation by oxidation. Science 248:189–194
    [Google Scholar]
  35. Thomas G. H., Southworth T., Leon-Kempis M. R., Leech A., Kelly D. J. 2006; Novel ligands for the extracellular solute receptors of two bacterial TRAP transporters. Microbiology 152:187–198
    [Google Scholar]
  36. Volk W. A., Larsen L. 1962; β -l-Gulonic acid as an intermediate in the bacterial metabolism of ascorbic acid. J Biol Chem 237:2454–2457
    [Google Scholar]
  37. Wardman P., Candeias L. P. 1996; Fenton chemistry: an introduction. Radiat Res 145:523–531
    [Google Scholar]
  38. Winterbourn C. C. 1995; Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett 82:83969–974
    [Google Scholar]
  39. Yan F., Williams S., Griffin G. D., Jagannathan R., Plunkett S. E., Shafer K. H. 2005; Near-real-time determination of hydrogen peroxide generated from cigarette smoke. J Environ Monit 7:681–687
    [Google Scholar]
  40. Yew W.-S., Gerlt J. A. 2002; Utilization of l-ascorbate by Escherichia coli K-12: assignments of functions to products of the yjf-sga and yia-sgb operons. J Bacteriol 184:302–306
    [Google Scholar]
  41. Young R. M., James L. H. 1942; Action of intestinal microorganisms on ascorbic acid. J Bacteriol 44:75–84
    [Google Scholar]
  42. Yu D., Ellis H. M., Lee E.-C., Jenkins N. A., Copeland N. G., Court D. L. 2000; An efficient recombination system for chromosome engineering in Escherichia coli . Proc Natl Acad Sci U S A 97:5978–5983
    [Google Scholar]
  43. Zhang Z., Aboulwafa M., Smith M. H., Saier M. H. Jr 2003; The ascorbate transporter of Escherichia coli . J Bacteriol 185:2243–2250
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009613-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009613-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error