1887

Abstract

Bacterial gene clusters, encoding periplasmic nitrate reductase (NapA), are complex and diverse, and the composition of the electron transport chain donating electrons to NapA is poorly characterized in most organisms. Exceptionally, transfers electrons from formate via the menaquinone pool to NapA independently of a membrane-bound -type cytochrome of the NapC family. The role of individual ORFs of the gene cluster is assessed here by characterizing in-frame gene inactivation mutants. The ability of the mutants to grow by nitrate respiration was tested and their NapA content and specific nitrate reductase activity were determined. The and gene products proved to be essential for nitrate respiration, with NapD being required for the production of mature NapA. Inactivation of either subunit of the putative membrane-bound menaquinol dehydrogenase complex NapGH almost abolished growth by nitrate respiration. Substitution of the twin-arginine sequence of NapG had the same effect as absence of NapG. Phenotypes of mutants lacking either NapF or NapL suggest that both proteins function in NapA assembly and/or export. The data substantiate the current model of the composition of the NapC-independent electron transport chain as well as of NapA maturation, and indicate the presence of an alternative electron transport pathway to NapA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/009928-0
2007-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3739.html?itemId=/content/journal/micro/10.1099/mic.0.2007/009928-0&mimeType=html&fmt=ahah

References

  1. Arnoux P., Sabaty M., Alric J., Frangioni B., Guigliarelli B., Adriano J.-M., Pignol D. 2003; Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Biol 10:928–934
    [Google Scholar]
  2. Baar C., Eppinger M., Raddatz G., Simon J., Lanz C., Klimmek O., Nandakumar R., Gross R., Rosinus A. other authors 2003; Complete genome sequence and analysis of Wolinella succinogenes. Proc Natl Acad Sci U S A 100:11690–11695
    [Google Scholar]
  3. Bergmeyer H. U. 1974 Methoden der enzymatischen Analyse Weinheim: Verlag Chemie;
  4. Berks B. C., Richardson D. J., Robinson C., Reilly A., Aplin R. T., Ferguson S. J. 1994; Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur J Biochem 220:117–124
    [Google Scholar]
  5. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. 1995; The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J 309:983–992
    [Google Scholar]
  6. Bode C., Goebell H., Stähler E. 1968; Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:418–422 in German
    [Google Scholar]
  7. Bokranz M., Katz J., Schröder I., Roberton A. M., Kröger A. 1983; Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135:36–41
    [Google Scholar]
  8. Brondijk T. H. C., Fiegen D., Richardson D. J., Cole J. A. 2002; Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol 44:245–255
    [Google Scholar]
  9. Brondijk T. H. C., Nilavongse A., Filenko N., Richardson D. J., Cole J. A. 2004; NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem J 379:47–55
    [Google Scholar]
  10. Dias J. M., Than M. E., Humm A., Huber R., Bourenkov G. P., Bartunik H. D., Bursakov S., Calvete J., Caldeira J. other authors 1999; Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7:65–79
    [Google Scholar]
  11. González P. J., Correia C., Moura I., Brondino C. D., Moura J. J. G. 2006; Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100:1015–1023
    [Google Scholar]
  12. Gross R., Eichler R., Simon J. 2005; Site-directed modifications indicate differences in axial haem c iron ligation between the related NrfH and NapC families of multihaem c-type cytochromes. Biochem J 390:689–693
    [Google Scholar]
  13. Hartley A. M., Asai R. J. 1963; Spectrophotometric determination of nitrate with 2,6-xylenol reagent. Anal Chem 35:1207–1213
    [Google Scholar]
  14. Jepson B. J. N., Marietou A., Mohan S., Cole J. A., Butler C. S., Richardson D. J. 2006; Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem Soc Trans 34:122–126
    [Google Scholar]
  15. Jepson B. J. N., Mohan S., Clarke T. A., Gates A. J., Cole J. A., Butler C. S., Butt J. N., Hemmings A. M., Richardson D. J. 2007; Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli. J Biol Chem 282:6425–6437
    [Google Scholar]
  16. Kröger A., Geisler V., Duchêne A. 1994; Isolation of Wolinella succinogenes hydrogenase, Chromatofocusing. In A Practical Guide to Membrane Protein Purification, pp. 141–147 Edited by von Jagow G., Schägger H. London: Academic Press;
    [Google Scholar]
  17. Kröger A., Biel S., Simon J., Gross R., Unden G., Lancaster C. R. D. 2002; Fumarate respiration of Wolinella succinogenes: enzymology, energetics and coupling mechanism. Biochim Biophys Acta 155323–38
    [Google Scholar]
  18. Kyhse-Andersen J. 1984; Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209
    [Google Scholar]
  19. Lin J. T., Stewart V. 1998; Nitrate assimilation by bacteria. Adv Microb Physiol 39:1–30
    [Google Scholar]
  20. Lorenzen J. P., Kröger A., Unden G. 1993; Regulation of anaerobic respiratory pathways in Wolinella succinogenes by the presence of electron acceptors. Arch Microbiol 159:477–483
    [Google Scholar]
  21. Marietou A., Richardson D., Cole J., Mohan S. 2005; Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. FEMS Microbiol Lett 248:217–225
    [Google Scholar]
  22. Nilavongse A., Brondijk T. H. C., Overton T. W., Richardson D. J., Leach E. R., Cole J. A. 2006; The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit NapA. Microbiology 152:3227–3237
    [Google Scholar]
  23. Olmo-Mira M. F., Gavira M., Richardson D. J., Castello F., Moreno-Vivián C., Roldán M. D. 2004; NapF is a cytoplasmic iron–sulfur protein required for Fe–S cluster assembly in the periplasmic nitrate reductase. J Biol Chem 279:49727–49735
    [Google Scholar]
  24. Palmer T., Sargent F., Berks B. C. 2005; Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13:175–180
    [Google Scholar]
  25. Pfennig N., Trüper H. G. 1981; Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes pp 279–289 Edited by Starr M. P., Stolp H., Trüper H. G., Balous A., Schlegel H. G. Berlin: Springer Verlag;
    [Google Scholar]
  26. Pittman M. S., Elvers K. T., Lee L., Jones M. A., Poole R. K., Park S. F., Kelly D. J. 2007; Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol Microbiol 63:575–590
    [Google Scholar]
  27. Potter L., Cole J. 1999; Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344:69–76
    [Google Scholar]
  28. Potter L. C., Angove H., Richardson D., Cole J. 2001; Nitrate reduction in the periplasm of Gram-negative bacteria. Adv Microb Physiol 45:51–112
    [Google Scholar]
  29. Reyes F., Gavira M., Castillo F., Moreno-Vivián C. 1998; Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J 331:897–904
    [Google Scholar]
  30. Richardson D. J., Berks B. C., Russell D. A., Spiro S., Taylor C. J. 2001; Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178
    [Google Scholar]
  31. Rider B. F., Mellon M. G. 1946; Colorimetric determination of nitrite. Indust Engin Chem 18:96–98
    [Google Scholar]
  32. Rodrigues M. L., Oliveira T. F., Pereira I. A., Archer M. 2006; X-ray structure of a membrane-bound cytochrome c quinol dehydrogenase with novel heme ligation. EMBO J 25:5951–5960
    [Google Scholar]
  33. Roldán M. D., Sears H. J., Cheesman M. R., Ferguson S. J., Thomson A. J., Berks B. C., Richardson D. J. 1998; Spectroscopic characterization of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J Biol Chem 273:28785–28790
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  35. Simon J. 2002; Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309
    [Google Scholar]
  36. Simon J., Kröger A. 1998; Identification and characterization of IS 1302, a novel insertion element from Wolinella succinogenes belonging to the IS 3 family. Arch Microbiol 170:43–49
    [Google Scholar]
  37. Simon J., Gross R., Einsle O., Kroneck P. M. H., Kröger A., Klimmek O. 2000; A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol Microbiol 35:686–696
    [Google Scholar]
  38. Simon J., Pisa R., Stein T., Eichler R., Klimmek O., Gross R. 2001; The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. Eur J Biochem 268:5776–5782
    [Google Scholar]
  39. Simon J., Sänger M., Schuster S. C., Gross R. 2003; Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol Microbiol 49:69–79
    [Google Scholar]
  40. Simon J., Einsle O., Kroneck P. M. H., Zumft W. G. 2004; The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett 569:7–12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/009928-0
Loading
/content/journal/micro/10.1099/mic.0.2007/009928-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error