1887

Abstract

The gene, which encodes the -aminobutyric acid (GABA) and -aminolaevulinic acid (ALA) permease, is well known to be regulated by the nitrogen source. Its expression levels are low in the presence of a rich nitrogen source but are higher when a poor nitrogen source is used. In addition, GABA can induce expression when cells are grown with proline but not when they are grown with ammonium. Although vast amounts of evidence have been gathered about regulation by nitrogen, little is known about its regulation by the carbon source. Using glucose and acetate as rich and poor carbon source respectively, this work aimed to shed light on hitherto unclear aspects of the regulation of this gene. In poor nitrogen conditions, cells grown with acetate were found to have higher basal expression levels than those grown with glucose, and did not show induction in response to GABA. Analysis of the expression and subcellular localization of the transcription factors that regulate as well as partial deletions and site-directed mutations of the promoter region suggested that there are two parallel pathways that act in regulating this gene by the carbon source. Furthermore, the results demonstrate the existence of a new factor operating in regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010231-0
2007-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/11/3677.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010231-0&mimeType=html&fmt=ahah

References

  1. Andre B., Hein C., Grenson M., Jauniaux J. C. 1993; Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237:17–25
    [Google Scholar]
  2. Andre B., Talibi D., Soussi Boudekou S., Hein C., Vissers S., Coornaert D. 1995; Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res 23:558–564
    [Google Scholar]
  3. Beck T., Hall M. N. 1999; The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692
    [Google Scholar]
  4. Bermudez Moretti M., Correa Garcia S., Ramos E., Batlle A. 1996; δ-Aminolevulinic acid uptake is mediated by the γ-aminobutyric acid-specific permease UGA4. Cell Mol Biol (Noisy-le-grand) 42:519–523
    [Google Scholar]
  5. Bertram P. G., Choi J. H., Carvalho J., Chan T. F., Ai W., Zheng X. F. 2002; Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3. Mol Cell Biol 22:1246–1252
    [Google Scholar]
  6. Boer V. M., Daran J. M., Almering M. J., de Winde J. H., Pronk J. T. 2005; Contribution of the Saccharomyces cerevisiae transcriptional regulator Leu3p to physiology and gene expression in nitrogen- and carbon-limited chemostat cultures. FEMS Yeast Res 5:885–897
    [Google Scholar]
  7. Bricmont P. A., Daugherty J. R., Cooper T. G. 1991; The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 11:1161–1166
    [Google Scholar]
  8. Coffman J. A., Rai R., Loprete D. M., Cunningham T., Svetlov V., Cooper T. G. 1997; Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol 179:3416–3429
    [Google Scholar]
  9. Crespo J. L., Powers T., Fowler B., Hall M. N. 2002; The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A 99:6784–6789
    [Google Scholar]
  10. Cunningham T. S., Dorrington R. A., Cooper T. G. 1994; The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsive regulation and DAL80 protein binding in Saccharomyces cerevisiae. J Bacteriol 176:4718–4725
    [Google Scholar]
  11. Gietz R. D., Woods R. A. 2002; Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96
    [Google Scholar]
  12. Kelley C., Blumberg H., Zon L. I., Evans T. 1993; GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 118:817–827
    [Google Scholar]
  13. Kulkarni A. A., Abul-Hamd A. T., Rai R., El Berry H., Cooper T. G. 2001; Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276:32136–32144
    [Google Scholar]
  14. Kulkarni A., Buford T. D., Rai R., Cooper T. G. 2006; Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. FEMS Yeast Res 6:218–229
    [Google Scholar]
  15. Kuruvilla F. G., Shamji A. F., Schreiber S. L. 2001; Carbon- and nitrogen-quality signaling to translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci U S A 98:7283–7288
    [Google Scholar]
  16. Kuruvilla F. G., Shamji A. F., Sternson S. M., Hergenrother P. J., Schreiber S. L. 2002; Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416:653–657
    [Google Scholar]
  17. Laverriere A. C., MacNeill C., Mueller C., Poelmann R. E., Burch J. B., Evans T. 1994; GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 269:23177–23184
    [Google Scholar]
  18. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  19. Myers A. M., Tzagoloff A., Kinney D. M., Lusty C. J. 1986; Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310
    [Google Scholar]
  20. Sambrook J., Fritsch E. F., Maniatis T. 1997 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  21. Shamji A. F., Kuruvilla F. G., Schreiber S. L. 2000; Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins. Curr Biol 10:1574–1581
    [Google Scholar]
  22. Soussi-Boudekou S., Vissers S., Urrestarazu A., Jauniaux J. C., Andre B. 1997; Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol 23:1157–1168
    [Google Scholar]
  23. Strachan T., Read A. P. 1999; PCR, DNA sequencing and in vitro mutagenesis. In Human Molecular Genetics 2 London: Garland Science;
    [Google Scholar]
  24. Talibi D., Grenson M., Andre B. 1995; Cis- and trans-acting elements determining induction of the genes of the gamma-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic Acids Res 23:550–557
    [Google Scholar]
  25. Tate J. J., Rai R., Cooper T. G. 2005; Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae. J Biol Chem 280:27195–27204
    [Google Scholar]
  26. Tate J. J., Rai R., Cooper T. G. 2006; Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1. J Biol Chem 281:28460–28469
    [Google Scholar]
  27. Weiss M. J., Orkin S. H. 1995; GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 23:99–107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010231-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010231-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error