1887

Abstract

DsbA ensures the correct folding of many exported bacterial proteins by forming intramolecular disulphide bonds in the bacterial periplasm. The pathogen is unusual in its possession of three different genes (, and ), encoding two membrane-anchored (DsbA1 and DsbA2) and one periplasmic (DsbA3) thiol-disulphide oxidoreductase enzymes. In this study, the involvement of DsbA1 and DsbA2 in natural competence was confirmed and attributed to events in the early stages of the transformation process. Strains lacking both DsbA1 and DsbA2 were reduced in competence as a result of decreased DNA binding and uptake. Overexpression of DsbA3 could not overcome this defect, suggesting differences in substrate specificity and protein-folding abilities between the DsbA homologues. Competence in is dependent on the expression of type IV pili, which are extruded and retracted through the outer-membrane secretin PilQ. Both DsbA1 and DsbA2 were able to specifically bind PilQ in solid-phase overlay assays. Consistent with this, deletion of both and resulted in reduced levels of PilQ, confirming inefficient folding of PilQ, while pilus expression was apparently unaffected. The secretin PilQ is involved in DNA binding and transport as well as pilus biogenesis, and the defect in PilQ folding resulting from the absence of DsbA1 and DsbA2 is revealed in the observed decreased DNA binding and uptake.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/010496-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/217.html?itemId=/content/journal/micro/10.1099/mic.0.2007/010496-0&mimeType=html&fmt=ahah

References

  1. Aas F. E., Wolfgang M., Frye S., Dunham S., Løvold C., Koomey M. 2002; Competence for natural transformation in Neisseria gonorrhoeae : components of DNA binding and uptake linked to type IV pilus expression. Mol Microbiol 46:749–760
    [Google Scholar]
  2. Ambur O. H., Frye S. A., Tønjum T. 2007; New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 189:2077–2085
    [Google Scholar]
  3. Assalkhou R., Balasingham S., Collins R. F., Frye S. A., Davidsen T., Benam A. V., Bjoras M., Derrick J. P., Tønjum T. 2007; The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153:1593–1603
    [Google Scholar]
  4. Balasingham S. V., Collins R. F., Assalkhou R., Homberset H., Frye S. A., Derrick J. P., Tønjum T. 2007; Interactions between the lipoprotein PilP and the secretin PilQ in Neisseria meningitidis . J Bacteriol 189:5716–5727
    [Google Scholar]
  5. Bardwell J. C., McGovern K., Beckwith J. 1991; Identification of a protein required for disulfide bond formation in vivo . Cell 67:581–589
    [Google Scholar]
  6. Bolhuis A., Venema G., Quax W. J., Bron S., van Dijl J. M. 1999; Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis . J Biol Chem 274:24531–24538
    [Google Scholar]
  7. Bouwman C. W., Kohli M., Killoran A., Touchie G. A., Kadner R. J., Martin N. L. 2003; Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J Bacteriol 185:991–1000
    [Google Scholar]
  8. Collins R. F., Frye S. A., Balasingham S., Ford R. C., Tonjum T., Derrick J. P. 2005; Interaction with type IV pili induces structural changes in the bacterial outer membrane secretin PilQ. J Biol Chem 280:18923–18930
    [Google Scholar]
  9. Drake S. L., Sandstedt S. A., Koomey M. 1997; PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae , affects expression of PilQ as a high-molecular-mass multimer. Mol Microbiol 23:657–668
    [Google Scholar]
  10. Elkins C., Thomas C. E., Seifert H. S., Sparling P. F. 1991; Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173:3911–3913
    [Google Scholar]
  11. Frye S. A., Assalkhou R., Collins R. F., Ford R. C., Petersson C., Derrick J. P., Tonjum T. 2006; Topology of the outer-membrane secretin PilQ from Neisseria meningitidis . Microbiology 152:3751–3764
    [Google Scholar]
  12. Hélaine S., Carbonnelle E., Prouvensier L., Beretti J. L., Nassif X., Pelicic V. 2005; PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 55:65–77
    [Google Scholar]
  13. Holten E. 1979; Serotypes of Neisseria meningitidis isolated from patients in Norway during the first six months of 1978. J Clin Microbiol 9:186–188
    [Google Scholar]
  14. Jacob-Dubuisson F., Pinkner J., Xu Z., Striker R., Padmanhaban A., Hultgren S. J. 1994; PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc Natl Acad Sci U S A 91:11552–11556
    [Google Scholar]
  15. Jansen R., Briaire J., Smith H. E., Dom P., Haesebrouck F., Kamp E. M., Gielkens A. L., Smits M. A. 1995; Knockout mutants of Actinobacillus pleuropneumoniae serotype 1 that are devoid of RTX toxins do not activate or kill porcine neutrophils. Infect Immun 63:27–37
    [Google Scholar]
  16. Masson L., Holbein B. E. 1983; Physiology of sialic acid capsular polysaccharide synthesis in serogroup B Neisseria meningitidis . J Bacteriol 154:728–736
    [Google Scholar]
  17. Ménard R., Sansonetti P. J., Parsot C. 1993; Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906
    [Google Scholar]
  18. Monod M., Denoya C., Dubnau D. 1986; Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis . J Bacteriol 167:138–147
    [Google Scholar]
  19. Nassif X., Beretti J. L., Lowy J., Stenberg P., O'Gaora P., Pfeifer J., Normark S., So M. 1994; Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A 91:3769–3773
    [Google Scholar]
  20. O'Dwyer C. A., Reddin K., Martin D., Taylor S. C., Gorringe A. R., Hudson M. J., Brodeur B. R., Langford P. R., Kroll J. S. 2004; Expression of heterologous antigens in commensal Neisseria spp.: preservation of conformational epitopes with vaccine potential. Infect Immun 72:6511–6518
    [Google Scholar]
  21. Ondo-Mbele E., Vivès C., Koné A., Serre L. 2005; Intriguing conformation changes associated with the trans / cis isomerization of a prolyl residue in the active site of the DsbA C33A mutant. J Mol Biol 347:555–563
    [Google Scholar]
  22. Robertson B. D., Frosch M., van Putten J. P. 1993; The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Mol Microbiol 8:891–901
    [Google Scholar]
  23. Sambrook J., Fritch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  24. Segal E., Billyard E., So M., Storzbach S., Meyer T. F. 1985; Role of chromosomal rearrangement in N. gonorrhoeae pilus phase variation. Cell 40:293–300
    [Google Scholar]
  25. Simon L. D., Randolph B., Irwin N., Binkowski G. 1983; Stabilization of proteins by a bacteriophage T4 gene cloned in Escherichia coli . Proc Natl Acad Sci U S A 80:2059–2062
    [Google Scholar]
  26. Sinha S., Langford P. R., Kroll J. S. 2004; Functional diversity of three different DsbA proteins from Neisseria meningitidis . Microbiology 150:2993–3000
    [Google Scholar]
  27. Tinsley C. R., Voulhoux R., Beretti J. L., Tommassen J., Nassif X. 2004; Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis : effects on bacterial growth and biogenesis of functional type IV pili. J Biol Chem 279:27078–27087
    [Google Scholar]
  28. Tomb J. F. 1992; A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc Natl Acad Sci U S A 89:10252–10256
    [Google Scholar]
  29. Tønjum T., Caugant D. A., Dunham S. A., Koomey M. 1998; Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein. Mol Microbiol 29:111–124
    [Google Scholar]
  30. Turcot I., Ponnampalam T. V., Bouwman C. W., Martin N. L. 2001; Isolation and characterization of a chromosomally encoded disulphide oxidoreductase from Salmonella enterica serovar Typhimurium. Can J Microbiol 47:711–721
    [Google Scholar]
  31. Virji M., Kayhty H., Ferguson D. J., Alexandrescu C., Heckels J. E., Moxon E. R. 1991; The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol 5:1831–1841
    [Google Scholar]
  32. Zhang H. Z., Donnenberg M. S. 1996; DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli . Mol Microbiol 21:787–797
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/010496-0
Loading
/content/journal/micro/10.1099/mic.0.2007/010496-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error