1887

Abstract

produces the mycotoxin fumonisin B (FB) on maize kernels. In this study, we identified a putative protein phosphatase gene in , and investigated its role in FB regulation. Previous work has shown that expression is elevated in an FB-suppressing genetic background. Thus, we hypothesized that is negatively associated with FB production. To test this hypothesis, we generated a knockout mutant, PP179, and studied the effects of gene deletion on FB biosynthesis and fungal development. PP179 showed elevated expression of genes, and in turn produced higher levels of FB than the wild-type progenitor. Other significant mutant phenotypes included reduced radial growth on agar plates, reduced conidia germination rates, significantly increased macroconidia formation, and hyphal swelling. To verify that these phenotypes were directly due to deletion, we complemented PP179 with the wild-type gene. The complemented strain PPC4 showed expression and FB production similar to that of the wild-type, providing evidence that is negatively associated with FB biosynthesis. Other PP179 phenotypes, such as macroconidiation and hyphal swelling, were also restored to that of wild-type progenitor. Furthermore, we complemented PP179 strain with wild-type gene, demonstrating that Cpp1 and PPE-1 proteins are functionally conserved. Pleiotropic effects of deletion led us to hypothesize that is associated with multiple downstream signalling pathways in . Identification and functional characterization of downstream Cpp1-interacting proteins are necessary to better understand the complex regulatory mechanisms associated with Cpp1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011411-0
2008-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/326.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011411-0&mimeType=html&fmt=ahah

References

  1. Amberg D. C., Zahner J. E., Mulholland J. W., Pringle J. R., Botstein D. 1997; Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol Biol Cell 8:729–753
    [Google Scholar]
  2. Brown D. W., Butchko R. A., Busman M., Proctor R. 2007; The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell 6:1210–1218
    [Google Scholar]
  3. Ceulemans H., Bollen M. 2004; Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39
    [Google Scholar]
  4. Chant J., Mischke M., Mitchell E., Herskowitz I., Pringle J. R. 1995; Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol 129:767–778
    [Google Scholar]
  5. Cutler N. S., Pan X., Heitman J., Cardenas M. E. 2001; The TOR signal transduction cascade controls cellular differentiation in response to nutrients. Mol Biol Cell 12:4103–4113
    [Google Scholar]
  6. Di Como C. J., Arndt K. T. 1996; Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phophatases. Genes Dev 10:1904–1916
    [Google Scholar]
  7. Dickman M. B., Yarden O. 1999; Serine/threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet Biol 26:99–117
    [Google Scholar]
  8. Fitzgibbon G. J., Morozov I. Y., Jones M. G., Caddick M. X. 2005; Genetic analysis of the TOR pathway in Aspergillus nidulans . Eukaryot Cell 4:1595–1598
    [Google Scholar]
  9. Flaherty J. E., Woloshuk C. P. 2004; Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1 . Appl Environ Microbiol 70:2653–2659
    [Google Scholar]
  10. Flaherty J. E., Pirttila A. M., Bluhm B. H., Woloshuk C. P. 2003; PAC1 , a pH-regulatory gene from Fusarium verticillioides . Appl Environ Microbiol 69:5222–5227
    [Google Scholar]
  11. Gelderblom W. C. A., Jaskiewicz K., Marasas W. F. O., Thiel P. G., Horak R. M., Vleggaar R., Kriek N. P. J. 1988; Fumonisins – novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme . Appl Environ Microbiol 54:1806–1811
    [Google Scholar]
  12. Harris S. D., Hamer L., Sharpless K. E., Hamer J. E. 1997; The Aspergillus nidulans sepA gene encodes an FH1/2 protein involved in cytokinesis and the maintenance of cellular polarity. EMBO J 16:3474–3483
    [Google Scholar]
  13. Hunter T. 1995; Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225–236
    [Google Scholar]
  14. Jiang Y. 2006; Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae . Microbiol Mol Biol Rev 70:440–449
    [Google Scholar]
  15. Kosmidou E., Lunness P., Doonan J. H. 2001; A type 2A protein phosphatase gene from Aspergillus nidulans is involved in hyphal morphogenesis. Curr Genet 39:25–34
    [Google Scholar]
  16. Kroken S., Glass N. L., Taylor J. W., Yoder O. C., Turgeon B. G. 2003; Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675
    [Google Scholar]
  17. Li S., Myung K., Guse D., Donkin B., Proctor R. H., Grayburn W. S., Calvo A. M. 2006; FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides . Mol Microbiol 62:1418–1432
    [Google Scholar]
  18. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408
    [Google Scholar]
  19. Marasas W. F. O. 2001; Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109:239–243
    [Google Scholar]
  20. Mayer-Jaekel R. E., Hemmings B. A. 1994; Protein phosphatase 2A – a ‘ménage à trois’. Trends Cell Biol 4:287–291
    [Google Scholar]
  21. Minorsky P. V. 2002; The hot and the classic. Plant Physiol 129:5–6
    [Google Scholar]
  22. Missmer S. A., Suarez L., Felkner M., Wang E., Merrill A. H. Jr, Rothman K. J., Hendricks K. A. 2006; Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ Health Perspect 114:237–241
    [Google Scholar]
  23. Nelson P. E., Marasas W. F. O., Toussoun T. A. 1983 Fusarium Species; an Illustrated Manual for Identification University Park, PA: The Pennsylvania State University Press;
  24. Park D. L., Troxell T. C. 2002; US perspective on mycotoxin regulatory issues. Adv Exp Med Biol 504:277–285
    [Google Scholar]
  25. Pirttilä A. M., McIntyre L. M., Payne G. A., Woloshuk C. P. 2004; Expression profile analysis of wild-type and fcc1 mutant strains of Fusarium verticillioides during fumonisin biosynthesis. Fungal Genet Biol 41:647–656
    [Google Scholar]
  26. Proctor R. H., Desjardins A. E., Plattner R. D., Hohn T. M. 1999; A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet Biol 27:100–112
    [Google Scholar]
  27. Proctor R. H., Brown D. W., Plattner R. D., Desjardins A. E. 2003; Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis . Fungal Genet Biol 38:237–249
    [Google Scholar]
  28. Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M. P., Nicolas C., Lorenzo O., Rodriguez P. L. 2004; Gain-of function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signaling. Plant J 37:354–369
    [Google Scholar]
  29. Sagaram U. S., Shim W. B. 2007; Fusarium verticillioides GBB1 , a gene encoding heterotrimeric G protein β subunit, is associated with fumonisin B1 biosynthesis and hyphal development but not with fungal virulence. Mol Plant Pathol 8:375–384
    [Google Scholar]
  30. Sagaram U. S., Butchko R. A. E., Shim W. B. 2006; The putative monomeric G-protein GBP1 is negatively associated with fumonisin B1 production in Fusarium verticillioides . Mol Plant Pathol 7:381–389
    [Google Scholar]
  31. Sagot I., Rodal A. A., Moseley J., Goode B. L., Pellman D. 2002; An actin nucleation mechanism mediated by Bni1 and profiling. Nat Cell Biol 4:626–631
    [Google Scholar]
  32. Sakumoto N., Mukai Y., Uchida K., Kouchi T., Kuwajima J., Nakagawa Y., Sugioka S., Yamamoto E., Furuyama T. other authors 1999; A series of protein phosphatase gene disruptants in Saccharomyces cerevisiae . Yeast 15:1669–1679
    [Google Scholar]
  33. Sambrook J., Russell D. W. 2001 Molecular Cloning : a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Seo J.-A., Proctor R. H., Plattner R. D. 2001; Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides . Fungal Genet Biol 34:155–165
    [Google Scholar]
  35. Shaw B. D., Upadhyay S. 2005; Aspergillus nidulans swoK encodes an RNA binding protein that is important for cell polarity. Fungal Genet Biol 42:862–872
    [Google Scholar]
  36. Shenolikar S. 1994; Protein serine/threonine phosphatases-new avenues for cell regulation. Annu Rev Cell Biol 10:55–86
    [Google Scholar]
  37. Sheu Y.-J., Santos B., Fortin N., Costigan C., Snyder M. 1998; Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol Cell Biol 18:4053–4069
    [Google Scholar]
  38. Shim W. B., Woloshuk C. P. 1999; Nitrogen repression of fumonisin B1 biosynthesis in Gibberella fujikuroi . FEMS Microbiol Lett 177:109–116
    [Google Scholar]
  39. Shim W. B., Woloshuk C. P. 2001; Regulation of fumonisin B biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1 . Appl Environ Microbiol 67:1607–1612
    [Google Scholar]
  40. Shimanuki M., Kinoshita N., Ohkura H., Yoshida T., Toda T., Yanagida M. 1993; Isolation and characterization of the fission yeast protein phosphatase gene ppe1+ involved in cell shape control and mitosis. Mol Biol Cell 4:303–313
    [Google Scholar]
  41. Stark M. J. R. 1996; Yeast protein serine/threonine phosphatase: multiple roles and diverse regulation. Yeast 12:1647–1675
    [Google Scholar]
  42. Virag A., Harris S. D. 2006; Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Sap2 and Bud6. Eukaryot Cell 5:881–895
    [Google Scholar]
  43. Wendland J. 2003; Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Rep 4:200–204
    [Google Scholar]
  44. Yatzkan E., Yarden O. 1999; The B regulatory subunit of protein phosphatase 2A is required for completion of macroconidiation and other developmental processes in Neurospora crassa . Mol Microbiol 31:197–209
    [Google Scholar]
  45. Yatzkan E., Szöor B., Fehér Z., Dombrádi V., Yarden O. 1998; Protein phosphatase 2A is involved in hyphal growth of Neurospora crassa . Mol Gen Genet 259:523–531
    [Google Scholar]
  46. Yu J.-H., Hamari Z., Han K.-H., Seo J.-A., Reyes-Domínguez Y., Scazzocchio C. 2004; Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981
    [Google Scholar]
  47. Zabrocki P., Van Hoof C., Goris J., Thevelein J. M., Winderickx J., Wera S. 2002; Protein phosphatase 2A on track for nutrient-induced signaling in yeast. Mol Microbiol 43:835–842
    [Google Scholar]
  48. Zeke T., Kókai E., Szöor B., Yatzkan E., Yarden O., Szirák K., Fehér Z., Bagossi P., Gergely P., Dombrádi V. 2003; Expression of protein phosphatase 1 during the asexual development of Neurospora crassa . Comp Biochem Physiol B Biochem Mol Biol 134:161–170
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011411-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011411-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error