1887

Abstract

Urinary tract infection (UTI) is the most common infection in patients with indwelling urinary catheters, and bacterial biofilm formation is a major problem in this type of infection. is responsible for the large majority of UTIs. Free iron is strictly limited in the human urinary tract and there is fierce competition between the host and infectious bacteria for this essential metal. Urinary tract infectious have highly efficient mechanisms of iron acquisition, one of which is the yersiniabactin system. The gene, encoding the yersiniabactin receptor, is one of the most upregulated genes in biofilm; it was upregulated 63-fold in the UTI strain VR50. FyuA was found to be highly important for biofilm formation in iron-poor environments such as human urine. Mutants in show aberrant biofilm formation and the cells become filamentous; a VR50 mutant showed a 92 % reduction in biofilm formation in urine flow-cell chambers compared with the wild-type. The FyuA/yersiniabactin system is known to be important for virulence. Here we demonstrate a direct link between FyuA and biofilm formation in iron-poor environments. We also show that the availability of iron greatly influences UTI strains' ability to form biofilm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011981-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/167.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011981-0&mimeType=html&fmt=ahah

References

  1. Anderson G. G., Palermo J. J., Schilling J. D., Roth R., Heuser J., Hultgren S. J. 2003; Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301:105–107
    [Google Scholar]
  2. Banin E., Vasil M. L., Greenberg E. P. 2005; Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081
    [Google Scholar]
  3. Banin E., Brady K. M., Greenberg E. P. 2006; Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72:2064–2069
    [Google Scholar]
  4. Braun V. 2003; Iron uptake by Escherichia coli . Front Biosci 8:1409–1421
    [Google Scholar]
  5. Christensen B. B., Sternberg C., Andersen J. B., Palmer R. J. Jr, Nielsen A. T., Givskov M., Molin S. 1999; Molecular tools for study of biofilm physiology. Methods Enzymol 310:20–42
    [Google Scholar]
  6. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M. 1995; Microbial biofilms. Annu Rev Microbiol 49:711–745
    [Google Scholar]
  7. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  9. Durant L., Metais A., Soulama-Mouze C., Genevard J.-M., Nassif X., Escaich S. 2007; Identification of candidates for a subunit vaccine against extraintestinal pathogenic Escherichia coli . Infect Immun 75:1916–1925
    [Google Scholar]
  10. Ferrières L., Hancock V., Klemm P. 2007; Biofilm exclusion of uropathogenic bacteria by selected asymptomatic bacteriuria Escherichia coli strains. Microbiology 153:1711–1719
    [Google Scholar]
  11. Fetherston J. D., Bertolino V. J., Perry R. D. 1999; YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis . Mol Microbiol 32:289–299
    [Google Scholar]
  12. Foxman B. 2002; Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113 :Suppl. 1A5S–13S
    [Google Scholar]
  13. Hancock V., Klemm P. 2007; Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75:966–976
    [Google Scholar]
  14. Hancock V., Ferrières L., Klemm P. 2007; Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains. FEMS Microbiol Lett 267:30–37
    [Google Scholar]
  15. Heesemann J., Hantke K., Vocke T., Saken E., Rakin A., Stojiljkovic I., Berner R. 1993; Virulence of Yersinia enterocolitica is closely associated with siderophore production, expression of an iron-repressible outer membrane polypeptide of 65 000 Da and pesticin sensitivity. Mol Microbiol 8:397–408
    [Google Scholar]
  16. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersboll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program comstat. Microbiology 146:2395–2407
    [Google Scholar]
  17. Justice S. S., Hunstad D. A., Seed P. C., Hultgren S. J. 2006; Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci U S A 103:19884–19889
    [Google Scholar]
  18. Kaneko Y., Thoendel M., Olakanmi O., Britigan B. E., Singh P. K. 2007; The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888
    [Google Scholar]
  19. Kjaergaard K., Schembri M. A., Ramos C., Molin S., Klemm P. 2000; Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2:695–702
    [Google Scholar]
  20. Kumon H. 2000; Management of biofilm infections in the urinary tract. World J Surg 24:1193–1196
    [Google Scholar]
  21. Martinez J. L., Delgado-Iribarren A., Baquero F. 1990; Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev 6:45–56
    [Google Scholar]
  22. Morris N. S., Stickler D. J., McLean R. J. C. 1999; The development of bacterial biofilms on indwelling urethral catheters. World J Urol 17:345–350
    [Google Scholar]
  23. Neidhardt F. C., Bloch P. L., Smith D. F. 1974; Culture medium for enterobacteria. J Bacteriol 119:736–747
    [Google Scholar]
  24. O'Toole G., Kaplan H. B., Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79
    [Google Scholar]
  25. Perry R. D., Balbo P. B., Jones H. A., Fetherston J. D., DeMoll E. 1999; Yersiniabactin from Yersinia pestis : biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145:1181–1190
    [Google Scholar]
  26. Rakin A., Saken E., Harmsen D., Heesemann J. 1994; The pesticin receptor of Yersinia enterocolitica : a novel virulence factor with dual function. Mol Microbiol 13:253–263
    [Google Scholar]
  27. Rakin A., Noelting C., Schubert S., Heesemann J. 1999; Common and specific characteristics of the high-pathogenicity island of Yersinia enterolitica . Infect Immun 67:5265–5274
    [Google Scholar]
  28. Reid G., Denstedt J. D., Kang Y. S., Lam D., Nause C. 1992; Microbial adhesion and biofilm formation on ureteral stents in vitro and in vivo. J Urol 148:1592–1594
    [Google Scholar]
  29. Roos V., Klemm P. 2006; Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect Immun 74:3565–3575
    [Google Scholar]
  30. Roos V., Nielsen E. M., Klemm P. 2006a; Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol Lett 262:22–30
    [Google Scholar]
  31. Roos V., Ulett G. C., Schembri M. A., Klemm P. 2006b; The asymptomatic bacteriuria Escherichia coli strain 83972 out-competes UPEC strains in human urine. Infect Immun 74:615–624
    [Google Scholar]
  32. Russo T. A., Carlino U. B., Mong A., Jodush S. T. 1999; Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect Immun 67:5306–5314
    [Google Scholar]
  33. Schembri M. A., Givskov M., Klemm P. 2002; An attractive surface: gram-negative bacterial biofilms. Sci STKE 132:RE6
    [Google Scholar]
  34. Schubert S., Rakin A., Karch H., Carniel E., Heesemann J. 1998; Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480–485
    [Google Scholar]
  35. Schubert S., Fischer D., Heesemann J. 1999; Ferric enterochelin transport in Yersinia enterocolitica : molecular and evolutionary aspects. J Bacteriol 181:6387–6395
    [Google Scholar]
  36. Schubert S., Picard B., Gouriou S., Heesemann J., Denamur E. 2002; Yersinia high-pathogenicity island contributes to virulence in Escherichia coli causing extraintestinal infections. Infect Immun 70:5335–5337
    [Google Scholar]
  37. Schubert S., Rakin A., Heesemann J. 2004; The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int J Med Microbiol 294:83–94
    [Google Scholar]
  38. Snyder J. A., Haugen B. J., Buckles E. L., Lockatell C. V., Johnson D. E., Donnenberg M. S., Welch R. A., Mobley H. L. 2004; Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381
    [Google Scholar]
  39. Soto S. M., Smithson A., Horcajada J. P., Martinez J. A., Mensa J. P., Vila J. 2006; Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli . Clin Microbiol Infect 12:1034–1036
    [Google Scholar]
  40. Stamm W. E., Norrby S. R. 2001; Urinary tract infections: disease panorama and challenges. J Infect Dis 183 :Suppl. 1S1–S4
    [Google Scholar]
  41. Warren J. W. 2001; Catheter-associated urinary tract infections. Int J Antimicrob Agents 17:299–303
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011981-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011981-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error