1887

Abstract

Fractions enriched with chitosomes and vesicles carrying glucose oxidase (GOX) activity from the dimorphic zygomycete were obtained using two successive sucrose gradients, the first a linear-log and the second an isopycnic gradient. Using an [-P]GTP-binding assay, we detected the association of small GTP-binding proteins (21 and 17 kDa) with both types of vesicles. In addition, by ADP-ribosylation with C3 exotoxin, and Western blot analysis with specific antibodies, we identified the small GTPases RhoA (Rho1p) and Rab8, and a 17 kDa protein, with pI values of 6.0, 6.1, and 6.2 and molecular masses of 21, 21 and 17 kDa, respectively, associated with those vesicles carrying GOX activity. Rab and Cdc42 proteins with pI values of 6.1 and 6.2 and molecular masses of 21 and 17 kDa, respectively, were found associated with chitosomes. These data indicate the presence in of low molecular mass G-proteins in chitosomes and in vesicles carrying GOX activity. The difference in association of Rho1 and Cdc42, with vesicles carrying GOX activity and chitosomes, respectively, indicates that each of these proteins probably controls formation, transport and specific plasma membrane site docking of the respective vesicles.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012179-0
2008-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/842.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012179-0&mimeType=html&fmt=ahah

References

  1. Adamo J. E., Rossi G., Bernnwald P. 1999; The Rho GTPase Rho3 has direct role in exocytosis that is distinct from its role in actin polarity. Mol Biol Cell 10:4121–4133
    [Google Scholar]
  2. Adamo J. E., Moskow J. J., Gladfelter A. S., Viterbo D., Lew D. J., Bernnwald P. J. 2001; Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J Cell Biol 155:581–592
    [Google Scholar]
  3. Bartnicki-García S., Nickerson W. J. 1962; Nutrition, growth and morphogenesis of Mucor rouxii . J Bacteriol 84:841–858
    [Google Scholar]
  4. Boyd C., Hughes T., Pypaert M., Novick P. 2004; Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits. Sec3p and Exo70p. J Cell Biol 167:889–901
    [Google Scholar]
  5. Bracker C. E., Ruiz–Herrera J., Bartniki-Garcia S. 1976; Structure and transformation of chitin synthetase particles (chitosomes) during microfibril synthesis in vitro. Proc Natl Acad Sci U S A 73:4570–4574
    [Google Scholar]
  6. Brakke M. K., Van Pelt N. 1970; Linear log sucrose gradients for estimating sedimentation coefficients of plan viruses and nucleic acids. Anal Biochem 38:56–64
    [Google Scholar]
  7. Burgess T. L., Kelly R. B. 1987; Consitutive and regulated secretion of proteins. Annu Rev Cell Biol 3:243–293
    [Google Scholar]
  8. Cabib E., Drgonova J., Drgon T. 1998; Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem 67:307–333
    [Google Scholar]
  9. Chant J., Stowers L. 1995; GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81:1–4
    [Google Scholar]
  10. Colombo M. I., Inglese J., D'Souza-Schorey C., Beron W., Stahl P. D. 1995; Heterotrimeric G proteins interact with the small GTPase ARF. Possibilities for the regulation of vesicular traffic. J Biol Chem 270:24564–24571
    [Google Scholar]
  11. De la Cruz J. O., García-Soto J., Uriostegui C., Carranza L., Novoa G., Reyna-López G., Martinez-Cadena G. 2007; Differential expression of Rho1GTPase and Rho3GTPase during isotropic and polarized growth of Mucor circinelloides . Can J Microbiol 53:168–176
    [Google Scholar]
  12. Deneka M., Neeft M., van der Sluijs P. 2003; Regulation of membrane transport by Rab GTPases. Crit Rev Biochem Mol Biol 38:121–142
    [Google Scholar]
  13. Dong Y., Pruyne D., Bretscher A. 2003; Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J Cell Biol 161:1081–1092
    [Google Scholar]
  14. Drees B. L., Sundin B., Brazeau E., Cavison J. P., Chen G.-C., Guo W., Kozminski K. G., Lau M. W., Moskow J. J. other authors 2001; A protein interaction map for cell polarity development. J Cell Biol 154:549–571
    [Google Scholar]
  15. Goud B., Salminen A., Walworth N. C., Novick P. J. 1988; A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753–768
    [Google Scholar]
  16. Guo W., Roth D., Walch-Solimena C., Novick P. 1999; The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18:1071–1080
    [Google Scholar]
  17. Guo W., Tamanoi F., Novick P. 2001; Spatial regulation of the exocyst complex by Rho1 GTPase. Nat Cell Biol 3:353–360
    [Google Scholar]
  18. Harris S. D., Momany M. 2004; Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400
    [Google Scholar]
  19. Jaffe A. B., Hall A. 2005; RhoGTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269
    [Google Scholar]
  20. Johnson D. I. 1999; Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63:54–105
    [Google Scholar]
  21. Jordens I., Marsman M., Kuijl C., Neefjes J. 2005; Rab proteins, connecting transport and vesicle fusion. Traffic 6:1070–1077
    [Google Scholar]
  22. Karpova T. S., Reck-Peterson S. L., Elikind N. B., Mooseker M. S., Novick P. J., Cooper J. A. 2000; Role of actin and Myo2p in polarized secretion and growth of Saccharomyces cerevisiae . Mol Biol Cell 11:1727–1737
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  24. Langford G. M. 2002; Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865
    [Google Scholar]
  25. Lapetina E. G., Reep B. R. 1987; Specific binding of [ α -32P]GTP to cytosolic and membrane-bound proteins of human platelets correlates with the activation of phospholipase C. Proc Natl Acad Sci U S A 84:2261–2265 erratum appears in Proc Natl Acad Sci U S A 85, 1070
    [Google Scholar]
  26. Larsen G. G., Appel K. F., Wolff A. M., Nielsen J., Arnau J. 2004; Characterisation of the Mucor circinelloides regulated promoter gpd1P. Curr Genet 45:225–234
    [Google Scholar]
  27. Leyte A., Barr F. A., Kehlenbach R. H., Hunttner W. B. 1992; Multiple trimeric G-proteins on the trans-Golgi network exert stimulatory and inhibitory effects in secretory vesicle formation. EMBO J 11:4795–4804
    [Google Scholar]
  28. Martínez-Cadena G., López-Romero E., Acosta I., Gonzáles C., Ruiz-Herrera J. 1987; Stabilization of chitin synthetase and purification of chitosomes from several mycelial Mucorales. Antonie Van Leeuwenhoek 53:171–181
    [Google Scholar]
  29. Molendijk A. J., Ruperti B., Palme K. 2004; Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694–700
    [Google Scholar]
  30. Orlowski M. 1991; Mucor dimorphism. Microbiol Rev 55:234–258
    [Google Scholar]
  31. Pruyne D. W., Schott D. H., Bretscher A. 1998; Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143:1931–1945
    [Google Scholar]
  32. Ridley A. J. 2001; Rho proteins: linking signaling with membrane trafficking. Traffic 2:303–310
    [Google Scholar]
  33. Robinson N. G., Guo L., Imai J., Matsui Y., Tamanoi F. 1999; Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is GTPase which interacts with Myo2 and Exo70. Mol Cell Biol 19:3580–3587
    [Google Scholar]
  34. Roumanie O., Wu H., Molk J. N., Rossi G., Bloom K., Brennwald P. 2005; Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 170:583–594
    [Google Scholar]
  35. Ruiz-Herrera J., Braker C. E., Bartnicki-Garcia S. 1984; Sedimentation properties of chitosomes from Mucor rouxii . Protoplasma 122:178–190
    [Google Scholar]
  36. Segev N. 2001; Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13:500–511
    [Google Scholar]
  37. Sekine A., Fujiwara M., Narumiya S. 1989; Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J Biol Chem 264:8602–8605
    [Google Scholar]
  38. Singh U. S., Erickson J. W., Cerione R. A. 1995; Identification and biochemical characterization of an 80 kilodalton GTP-binding/transglutaminase from rabbit liver nuclei. Biochemistry 34:15863–15871
    [Google Scholar]
  39. Symons M., Rusk N. 2003; Control of vesicular trafficking by Rho GTPases. Curr Biol 13:R409–R418
    [Google Scholar]
  40. Takai Y., Sasaki T., Matozaki T. 2001; Small GTP-binding proteins. Physiol Rev 81:153–208
    [Google Scholar]
  41. Titus M. A. 1997; Motor proteins: myosin V – the multi-purpose transport motor. Curr Biol 7:R301–R304
    [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  43. Yamochi W., Tanaka K., Nonaka H., Maeda A., Musha T., Takai Y. 1994; Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae . J Cell Biol 125:1077–1093
    [Google Scholar]
  44. Zhang X., Bi E., Novick P., Du L., Kozminiski K. G., Lipschutz J. H., Guo W. 2001; Cdc42 interacts with the exocyst and regulates polarized secretion. J Biol Chem 276:46745–46750
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012179-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012179-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error