1887

Abstract

Most strains express relatively low levels of leukotoxin, encoded by the operon. However, several strains isolated from patients with localized aggressive periodontitis are hyperleukotoxic and transcribe the operon at high levels. These strains possess a copy of IS in the promoter and previous studies have suggested that the presence of the insertion sequence increases transcription by uncoupling a -acting negative regulator of expression from the basal elements of the promoter. However, we now report that replacing IS with an equal length of random sequence has little effect on transcriptional activity of the promoter, suggesting that the physical displacement of the negative regulatory element does not contribute to the hyperleukotoxic phenotype of IS-containing strains. Instead, we show that a −10-like element upstream of the transposase ORF of IS is required for increased transcriptional activity of the promoter. Site-specific mutation of the −10 sequence, or reversing the orientation of IS relative to the basal promoter elements, reduced transcriptional activity to levels exhibited by the native promoter. However, no increase in transcription was observed when IS was recombinantly inserted into a promoter that contained a truncated copy of , suggesting that an intact may also be required for IS-mediated induction of . Therefore, to determine if functions as a regulator of expression, three independent -promoter–-reporter constructs containing frameshift mutations in were analysed. Each exhibited significantly lower expression of -galactosidase than the control reporter with intact . In addition, OrfA protein was shown, by mobility shift electrophoresis, to interact with the promoter at or downstream of the −35 sequence. These results suggest that a potential transposase promoter and the OrfA polypeptide may modulate leukotoxin expression in hyperleukotoxic strains containing IS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012195-0
2008-02-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/528.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012195-0&mimeType=html&fmt=ahah

References

  1. Balashova N. V., Crosby J. A., Al Ghofaily L., Kachlany S. C. 2006; Leukotoxin confers beta-hemolytic activity to Actinobacillus actinomycetemcomitans . Infect Immun 74:2015–2021
    [Google Scholar]
  2. Block P. J., Yoran C., Fox A. C., Kaltman A. J. 1973; Actinobacillus actinomycetemcomitans endocarditis: report of a case and review of the literature. Am J Med Sci 266:387–392
    [Google Scholar]
  3. Brogan J. M., Lally E. T., Poulsen K., Kilian M., Demuth D. R. 1994; Regulation of Actinobacillus actinomycetemcomitans expression: analysis of the promoter regions of leukotoxic and minimally leukotoxic strains. Infect Immun 62:501–508
    [Google Scholar]
  4. Brogan J. M., Lally E. T., Demuth D. R. 1996; Construction of pYGK, an Actinobacillus actinomycetemcomitans/Escherichia coli shuttle vector. Gene 169:141–142
    [Google Scholar]
  5. Bueno L. C., Mayer M. P., DiRienzo J. M. 1998; Relationship between conversion of localized juvenile periodontitis-susceptible children from health to disease and Actinobacillus actinomycetemcomitans leukotoxin promoter structure. J Periodontol 69:998–1007
    [Google Scholar]
  6. Cortelli J. R., Cortelli S. C., Jordan S., Haraszthy V. I., Zambon J. J. 2005; Prevalence of periodontal pathogens in Brazilians with aggressive or chronic periodontitis. J Clin Periodontol 32:860–866
    [Google Scholar]
  7. Estrem S. T., Ross W., Gaal T., Chen Z. W. S., Niu W., Ebright R. H., Gourse R. L. 1999; Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase α subunit. Genes Dev 13:2134–2147
    [Google Scholar]
  8. Gourse R. L., Ross W., Gaal T. 2000; UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 37:687–695
    [Google Scholar]
  9. Haraszthy V. I., Hariharan G., Tinoco E. M., Cortelli J. R., Lally E. T., Davis E., Zambon J. J. 2000; Evidence for the role of highly leukotoxic Actinobacillus actinomycetemcomitans in the pathogenesis of localized juvenile and other forms of early-onset periodontitis. J Periodontol 71:912–922
    [Google Scholar]
  10. Haubek D., DiRienzo J. M., Tinoco E. M. B., Kilian M. 1997; Racial tropism of a highly toxic clone of Actinobacillus actinomycetemcomitans associated with juvenile periodontitis. J Clin Microbiol 35:3037–3042
    [Google Scholar]
  11. Haubek D., Ennibi O. K., Poulsen K., Poulesen S., Benzarti N., Kilian M. 2001; Early-onset periodontitis in Morocco is associated with the highly leukotoxic clone of Actinobacillus actinomycetemcomitans . J Dent Res 80:1580–1583
    [Google Scholar]
  12. Haubek D., Ennibi O. K., Poulsen K., Benzarti N., Baelum V. 2004; The highly leukotoxic JP2 clone of Actinobacillus actinomycetemcomitans and progression of periodontal attachment loss. J Dent Res 83:767–770
    [Google Scholar]
  13. Haubek D., Poulsen K., Kilian M. 2007; Microevolution and patterns of dissemination of the JP2 clone of Aggregatibacter ( Actinobacillus ) actinomycetemcomitans . Infect Immun 75:3080–3088
    [Google Scholar]
  14. He T., Nishihara T., Demuth D. R., Ishikawa I. 1999; A novel insertion sequence increases the expression of leukotoxicity in Actinobacillus actinomycetemcomitans clinical isolates. J Periodontol 70:1261–1268
    [Google Scholar]
  15. Hritz M., Fisher E., Demuth D. R. 1996; Differential regulation of the leukotoxin operon in highly leukotoxic and minimally leukotoxic strains of Actinobacillus actinomycetemcomitans . Infect Immun 64:2724–2729
    [Google Scholar]
  16. Iwase M., Laly E. T., Berthold P., Korchak H. M., Taichman N. S. 1990; Effects of cations and osmotic protectants on cytolytic activity of Actinobacillus actinomycetemcomitans leukotoxin. Infect Immun 58:1782–1788
    [Google Scholar]
  17. Karakelian D., Lear J. D., Lally E. T., Tanaka J. C. 1998; Characterization of Actinobacillus actinomycetemcomitans leukotoxin pore formation in HL60 cells. Biochim Biophys Acta 1406175–187
    [Google Scholar]
  18. Kolodrubetz D., Spitznagel J. Jr, Wang B., Phillips L. H., Jacobs C., Kraig E. 1996; cis elements and trans factors are both important in strain-specific regulation of the leukotoxin gene in Actinobacillus actinomycetemcomitans . Infect Immun 64:3451–3460
    [Google Scholar]
  19. Korostoff J., Wang J. F., Kieba I., Miller M., Shenker B. J., Lally E. T. 1998; Actinobacillus actinomycetemcomitans leukotoxin induces apoptosis in HL-60 cells. Infect Immun 66:4474–4483
    [Google Scholar]
  20. Korostoff J., Yamaguchi N., Miller M., Kieba I., Lally E. T. 2000; Perturbation of mitochondrial structure and function plays a central role in Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis. Microb Pathog 29:267–278
    [Google Scholar]
  21. Kraig E., Dailey T., Kolodrubetz D. 1990; Nucleotide sequence of the leukotoxin gene from Actinobacillus actinomycetemcomitans : homology to the alpha-hemolysin/leukotoxin gene family. Infect Immun 58:920–929
    [Google Scholar]
  22. Lally E. T., Golub E. E., Kieba I. R., Taichman N. S., Rosenbloom J., Rosenbloom J. C., Gibson C. W., Demuth D. R. 1989; Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. Delineation of unique features and comparison to homologous toxins. J Biol Chem 264:15451–15456
    [Google Scholar]
  23. Lally E. T., Kieba I. R., Sato A., Green C. L., Rosenbloom J., Korostoff J., Wang J. F., Shenker B. S., Ortlepp S. other authors 1997; RTX toxins recognize a β 2 integrin on the surface of human target cells. J Biol Chem 272:30463–30469
    [Google Scholar]
  24. Lally E. T., Hill R. B., Kieba I. R., Korostoff J. 1999; The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361
    [Google Scholar]
  25. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Mitchell C., Gao L., Demuth D. R. 2003; Positive and negative cis -acting regulatory sequences control expression of leukotoxin in Actinobacillus actinomycetemcomitans 652. Infect Immun 71:5640–5649
    [Google Scholar]
  27. Page M. I., King E. O. 1966; Infection due to Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus . N Engl J Med 275:181–188
    [Google Scholar]
  28. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L. 1993; A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262:1407–1413
    [Google Scholar]
  29. Shenker B. J., McKay T., Datar S., Miller M., Chowden R., Demuth D. R. 1999; Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing G2 arrest in human T cells. J Immunol 162:4773–4780
    [Google Scholar]
  30. Shenker B. J., Hoffmaster R. H., McKay T. L., Demuth D. R. 2000; Expression of cytolethal distending toxin (Cdt) operon in Actinobacillus actinomycetemcomitans : evidence that the CdtB protein is responsible for G2 arrest of the cell cycle in human T cells. J Immunol 165:2612–2618
    [Google Scholar]
  31. Slots J., Reynolds H. S., Genco R. J. 1980; Actinobacillus actinomycetemcomitans in human periodontal disease: a cross sectional microbiological investigation. Infect Immun 29:1013–1020
    [Google Scholar]
  32. Welch R. A. 1991; Pore forming cytolysins of Gram-negative bacteria. Mol Microbiol 5:521–528
    [Google Scholar]
  33. Zambon J. J. 1985; Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol 12:1–20
    [Google Scholar]
  34. Zambon J. J., Slots J., Genco R. J. 1983; Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease. Infect Immun 41:19–27
    [Google Scholar]
  35. Zambon J. J., Haraszthy V., Hariharan G., Lally E. T., Demuth D. R. 1996; The microbiology of early onset periodontitis: association of highly toxic A ctinobacillus. actinomycetemcomitans strains with localized juvenile periodontitis. J Periodontol 67:282–290
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012195-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012195-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error