1887

Abstract

The homothallic ascomycete fungus (anamorph: ) is a major toxigenic plant pathogen that causes head blight disease on small-grain cereals. The fungus produces the mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) in infected hosts, posing a threat to human and animal health. Despite its agricultural and toxicological importance, the molecular mechanisms underlying its growth, development and virulence remain largely unknown. To better understand such mechanisms, we studied the heterotrimeric G proteins of , which are known to control crucial signalling pathways that regulate various cellular and developmental responses in fungi. Three putative G subunits, , and , and one G subunit, , were identified in the genome. Deletion of , a homologue of the G gene , resulted in female sterility and enhanced DON and ZEA production, suggesting that is required for normal sexual reproduction and repression of toxin biosynthesis. The production of DON and ZEA was also enhanced in the mutant, suggesting that both G and G negatively control mycotoxin production. Deletion of , which encodes a G protein similar to . GanB, caused reduced pathogenicity and increased chitin accumulation in the cell wall, implying that has multiple functions. Our study shows that heterotrimeric G protein subunits can regulate vegetative growth, sexual development, toxin production and pathogenicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012260-0
2008-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/392.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012260-0&mimeType=html&fmt=ahah

References

  1. Bacon C. W., Robins J. D., Porter J. K. 1977; Media for identification of Gibberella zeae and production of F-2 (zearalenone. Appl Environ Microbiol 33:445–449
    [Google Scholar]
  2. Barber M. S., Bertram R. E., Ride J. P. 1989; Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 34:3–12
    [Google Scholar]
  3. Bölker M. 1998; Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25:143–156
    [Google Scholar]
  4. Buss J. E., Mumby S. M., Casey P. J., Gilman A. G., Sefton B. M. 1987; Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci U S A 84:7493–7497
    [Google Scholar]
  5. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P. 2002; Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459
    [Google Scholar]
  6. Chang M. H., Chae K. S., Han D. M., Jahng K. Y. 2004; The GanB G α -protein negatively regulates asexual sporulation and plays a positive role in conidial germination in Aspergillus nidulans . Genetics 167:1305–1315
    [Google Scholar]
  7. Choi G. H., Chen B., Nuss D. L. 1995; Virus-mediated or transgenic suppression of a G-protein α subunit and attenuation of fungal virulence. Proc Natl Acad Sci U S A 92:305–309
    [Google Scholar]
  8. Coca M. A., Damsz B., Yun D.-J., Hasegawa O. M., Bressan R. A., Narasimhan M. L. 2000; Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant J 22:61–69
    [Google Scholar]
  9. Dawe A. L., Nuss D. L. 2001; Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu Rev Genet 35:1–29
    [Google Scholar]
  10. Delgado-Jarana J., Martinez-Rocha A. L., Roldan-Rodriguez R., Roncero M. I., Di Pietro A. 2005; Fusarium oxysporum G-protein β subunit Fgb1 regulates hyphal growth, development, and virulence through multiple signalling pathways. Fungal Genet Biol 42:61–72
    [Google Scholar]
  11. Desjardins A. E. 2006 Fusarium Mycotoxins. Chemistry, Genetics, and Biology St Paul, MN: The American Phytopathological Society;
  12. Dohlman H. G., Thorner J. W. 2001; Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70:703–754
    [Google Scholar]
  13. Ganem S., Lu S.-W., Lee B.-N., Chou D. Y.-T., Hadar R., Turgeon B. G., Horwitz B. A. 2004; G-protein β subunit of Cochliobolus heterostrophus involved in virulence, asexual and sexual reproductive ability, and morphogenesis. Eukaryot Cell 3:1653–1663
    [Google Scholar]
  14. Gao S., Nuss D. L. 1996; Distinct roles for two G protein α subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci U S A 93:14122–14127
    [Google Scholar]
  15. Goswami R. S., Kistler H. C. 2004; Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525
    [Google Scholar]
  16. Gronover C. S., Kasulke D., Tudzynski P., Tudzynski B. 2001; The role of G protein α subunits in the infection process of the gray mold fungus Botrytis cinerea . Mol Plant Microbe Interact 14:1293–1302
    [Google Scholar]
  17. Han Y.-K., Lee T., Han K.-H., Yun S.-H., Lee Y.-W. 2004; Functional analysis of the homoserine O -acetyltransferase gene and its identification as a selectable marker in Gibberella zeae . Curr Genet 46:205–212
    [Google Scholar]
  18. Hicks J. K., Yu J. H., Keller N. P., Adams T. H. 1997; Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G α protein-dependent signaling pathway. EMBO J 16:4916–4923
    [Google Scholar]
  19. Horwitz B. A., Sharon A., Lu S. W., Ritter V., Sandrock T. M., Yoder O. C., Turgeon B. G. 1999; A G protein α subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol 26:19–32
    [Google Scholar]
  20. Jain S., Akiyama K., Kan T., Ohguchi T., Takata R. 2002; Targeted disruption of a G protein α subunit gene results in reduced pathogenicity in Fusarium oxysporum . Curr Genet 41:407–413
    [Google Scholar]
  21. Jain S., Akiyama K., Kan T., Ohguchi T., Takata R. 2003; The G protein β subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum . Curr Genet 43:79–86
    [Google Scholar]
  22. Jain S., Akiyama K., Takata R., Ohguchi T. 2005; Signaling via the G protein α subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum . FEMS Microbiol Lett 243:165–172
    [Google Scholar]
  23. Kasahara S., Nuss D. L. 1997; Targeted disruption of a fungal G-protein β subunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact 10:984–993
    [Google Scholar]
  24. Kim J.-E., Han K.-H., Jin J., Kim H., Kim J.-C., Yun S.-H., Lee Y.-W. 2005; Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae . Appl Environ Microbiol 71:1701–1708
    [Google Scholar]
  25. Kim J.-E., Myong K., Shim W.-B., Yun S.-H., Lee Y.-W. 2007; Functional characterization of acetylglutamate synthase and phosphoribosylamine-glycine ligase genes in Gibberella zeae . Curr Genet 51:99–108
    [Google Scholar]
  26. Lee T., Han Y. K., Kim K. H., Yun S. H., Lee Y. W. 2002; Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae . Appl Environ Microbiol 68:2148–2154
    [Google Scholar]
  27. Lee J., Lee T., Lee Y. W., Yun S. H., Turgeon B. G. 2003; Shifting fungal reproductive mode by manipulation of mating-type genes: obligatory heterothallism of Gibberella zeae . Mol Microbiol 50:145–152
    [Google Scholar]
  28. Lengeler K. B., Davidson R. C., D'souza C., Harashima T., Shen W. C., Wang P., Pan X., Waugh M., Heitman J. 2000; Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785
    [Google Scholar]
  29. Leslie J. F., Summerell B. A. 2006 The Fusarium Laboratory Manual Ames, IA: Blackwell;
  30. Liu S., Dean R. A. 1997; G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea . Mol Plant Microbe Interact 10:1075–1086
    [Google Scholar]
  31. Lu S.-W., Kroken S., Lee B.-N., Robbertse B., Churchill A. C. L., Yodor O. C., Turgeon B. G. 2003; A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proc Natl Acad Sci U S A 100:5980–5985
    [Google Scholar]
  32. McDonald T., Brown D., Keller N. P., Hammond T. M. 2005; RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact 18:539–545
    [Google Scholar]
  33. Muller P., Leibbrandt A., Teuissen H., Cubasch S., Aichinger C., Kahmann R. 2004; The G β -subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis . Eukaryot Cell 3:806–814
    [Google Scholar]
  34. Ni M., Rierson S., Seo J.-A., Yu J.-H. 2005; The pkaB gene encoding the secondary protein kinase A catalytic subunit has a synthetic lethal interaction with pkaA and plays overlapping and opposite roles in Aspergillus nidulans . Eukaryot Cell 4:1465–1476
    [Google Scholar]
  35. Nishimura M., Park G., Xu J. R. 2003; The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea . Mol Microbiol 50:231–243
    [Google Scholar]
  36. Oide S., Moeder W., Krasnoff S., Gibson D., Haas H., Yoshioka K., Turgeon B. G. 2006; NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. Plant Cell 18:2836–2853
    [Google Scholar]
  37. Proctor R. H., Hohn T. M., McCormick S. P. 1995; Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601
    [Google Scholar]
  38. Rosén S., Yu J. H., Adams T. H. 1999; The Aspergillus nidulans sfaD gene encodes a G protein β subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600
    [Google Scholar]
  39. Sagaram U. S., Shim W.-B. 2007; Fusarium verticillioides GBB1 , a gene encoding heterotrimeric G protein β subunit, is associated with fumonisin B1 biosynthesis and hyphal development but not with fungal virulence. Mol Plant Pathol 8:375–384
    [Google Scholar]
  40. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Seo J. A., Han K. H., Yu J. H. 2005; Multiple roles of a heterotrimeric G-protein γ -subunit in governing growth and development of Aspergillus nidulans . Genetics 171:81–89
    [Google Scholar]
  42. Seong K., Hou Z. M., Tracy M., Kistler H. C., Xu J.-R. 2005; Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum . Phytopathology 95:744–750
    [Google Scholar]
  43. Shimizu K., Keller N. P. 2001; Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans . Genetics 157:591–600
    [Google Scholar]
  44. Tag A., Hicks J., Garifullina G., Ake C. Jr, Phillips T. D., Beremand M., Keller N. 2000; G-protein signalling mediates differential production of toxic secondary metabolites. Mol Microbiol 38:658–665
    [Google Scholar]
  45. Truesdell G. M., Yang Z. H., Dickman M. B. 2000; A G α subunit gene from the phytopathogenic fungus Colletotrichum trifolii is required for conidial germination. Physiol Mol Plant Pathol 56:131–140
    [Google Scholar]
  46. Tsutsui T., Morta-Yamamuro C., Asada Y., Minami E., Shibuya N., Ikeda A., Yamaguchi J. 2006; Salicylic acid and a chitin elicitor both control expression of the CAD1 gene involved in the plant immunity of Arabidopsis . Biosci Biotechnol Biochem 70:2042–2048
    [Google Scholar]
  47. Turner G. E., Borkovich K. A. 1993; Identification of a G protein α subunit from Neurospora crassa that is a member of the Gi family. J Biol Chem 268:14805–14811
    [Google Scholar]
  48. Voigt C. A., Schafer W., Salomon S. 2005; A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J 42:364–375
    [Google Scholar]
  49. Wan J., Zhang S., Stacey G. 2004; Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5:125–135
    [Google Scholar]
  50. West R. E., Moss J. Jr, Vaughan M., Liu T., Liu T. Y. 1985; Pertussis toxin-catalyzed ADP-ribosylation of transducin. Cysteine 347 is the ADP-ribose acceptor site. J Biol Chem 260:14428–14430
    [Google Scholar]
  51. Yu J. H. 2006; Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans . J Microbiol 44:145–154
    [Google Scholar]
  52. Yu J. H., Keller N. P. 2005; Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43:437–458
    [Google Scholar]
  53. Yu J. H., Wieser J., Adams T. H. 1996; The Aspergillus FlbA RGS domain protein antagonizes G protein signaling to block proliferation and allow development. EMBO J 15:5184–5190
    [Google Scholar]
  54. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Dominguez Y., Scazzocchio C. 2004; Double-joint PCR, a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981
    [Google Scholar]
  55. Zeilinger S., Barbara R., Scala V., Peissl I., Lorito M., Mach R. L. 2005; Signal transduction by Tga3, a novel G protein α subunit of Trichoderma atroviride . Appl Environ Microbiol 71:1591–1597
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012260-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012260-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error