1887

Abstract

In this study, we demonstrate that , an alternative factor of , is involved in cell surface stresses. Cells in which the gene was deleted evidenced increased sensitivity to magnesium deficiency, as well as to SDS, lysozymes, EDTA and heat. We utilized physiological analyses to show that the downstream gene, designated , encodes an anti- factor. The retarded growth of the mutant cells under ordinary growth conditions could be recovered by an additional deletion of encoding . Under stress conditions, the phenotype of the -overexpressing cells mimicked that of the mutant. The and genes were transcribed into a single transcript, and gene transcription was stimulated by heat. The SigE and CseE proteins interacted physically in the form of glutathione -transferase (GST) and maltose binding protein (MBP) fusion proteins, respectively. 2D-PAGE analysis of the wild-type and mutant crude extracts showed that the mutant failed to synthesize a 34 kDa polypeptide that was normally induced in wild-type cells grown under heat (or SDS)-stressed conditions. The protein turned out to be expressed from ORF NCgl1070 and showed similarity to methyltransferases which may confer resistance to antibiotics. Accordingly, the mutant evidenced extreme sensitivity to antibiotics, including nalidixic acid, penicillin and vancomycin. Finally, we present a discussion of the possible role of the and genes in the acclimation of to cell surface stress conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012690-0
2008-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/915.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012690-0&mimeType=html&fmt=ahah

References

  1. Alba B. M., Gross C. A. 2004; Regulation of the Escherichia coli σ E-dependent envelope stress response. Mol Microbiol 52:613–619
    [Google Scholar]
  2. Bae J. B., Park J. H., Hahn M. Y., Kim M. S., Roe J. H. 2004; Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor : zinc release and disulfide bond formation. J Mol Biol 335:425–435
    [Google Scholar]
  3. Boissier F., Bardou F., Guillet V., Uttenweiler-Joseph S., Daffé M., Quémard A., Mourey L. 2006; Further insight into S -adenosylmethionine-dependent methyltransferases. J Biol Chem 281:4434–4445
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Brinkrolf K., Brune I., Tauch A. 2007; The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum . J Biotechnol 129:191–211
    [Google Scholar]
  6. Browning D. F., Busby S. J. 2004; The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65
    [Google Scholar]
  7. Cozzarelli N. R. 1980; DNA gyrase and the supercoiling of DNA. Science 207:953–960
    [Google Scholar]
  8. Daffé M. 2005; The cell envelope of corynebacteria. In Handbook of Corynebacterium glutamicum pp 121–148 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  9. Dubnau E., Chan J., Raynaud C., Mohan V. P., Lanéelle M. A., Yu K., Quémard A., Smith S., Daffé M. 2000; Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36:630–637
    [Google Scholar]
  10. Duncan L., Losick R. 1993; SpoIIAB is an anti- σ factor that binds to and inhibits transcription by regulatory protein σ F from Bacillus subtilis . Proc Natl Acad Sci U S A 90:2325–2329
    [Google Scholar]
  11. Engels S., Schweitzer J. E., Ludwig C., Bott M., Schaffer S. 2004; clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor σ H . Mol Microbiol 52:285–302
    [Google Scholar]
  12. Follettie M. T., Peoples O., Agoropoulou C., Sinskey A. J. 1993; Gene structure and expression of the Corynebacterium flavum N13 ask–asd operon. J Bacteriol 175:4096–4103
    [Google Scholar]
  13. Gellert M. 1981; DNA topoisomerases. Annu Rev Biochem 50:879–910
    [Google Scholar]
  14. Gruber T. M., Gross C. A. 2003; Multiple sigma units and the partitioning of bacterial transcription space. Annu Rev Microbiol 57:441–466
    [Google Scholar]
  15. Hahn M. Y., Bae J. B., Park J. H., Roe J. H. 2003; Isolation and characterization of Streptomyces coelicolor RNA polymerase, its sigma, and antisigma factors. Methods Enzymol 370:73–82
    [Google Scholar]
  16. Halgasova N., Bukovska G., Timko J., Kormanec J. 2001; Cloning and transcriptional characterization of two sigma factor genes, sigA and sigB , from Brevibacterium flavum . Curr Microbiol 43:249–254
    [Google Scholar]
  17. Helmann J. D. 2002; The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110
    [Google Scholar]
  18. Hubbard B. K., Walsh C. T. 2003; Vancomycin assembly: nature's way. Angew Chem Int Ed Engl 42:730–765
    [Google Scholar]
  19. Hughes K. T., Mathee K. 1998; The anti-sigma factors. Annu Rev Microbiol 52:231–286
    [Google Scholar]
  20. Hutchings M. I., Hong H. J., Leibovitz E., Sutcliffe I. C., Buttner M. J. 2006; The σ E cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 188:7222–7229
    [Google Scholar]
  21. Hwang B. J., Yeom H. J., Kim Y. H., Lee H. S. 2002; Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184:1277–1286
    [Google Scholar]
  22. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109
    [Google Scholar]
  23. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25
    [Google Scholar]
  24. Kang J. G., Paget M. S., Seok Y. J., Hahn M. Y., Bae J. B. J., Hahn S., Kleanthous C., Buttner M. J., Roe J. H. 1999; RsrA, an anti-sigma factor regulated by redox change. EMBO J 18:4292–4298
    [Google Scholar]
  25. Kim T. H., Kim H. J., Park J. S., Kim Y., Kim P., Lee H. S. 2005; Functional analysis of sigH expression in Corynebacterium glutamicum . Biochem Biophys Res Commun 331:1542–1547
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  27. Larisch C., Nakunst D., Hüser A. T., Tauch A., Kalinowski J. 2007; The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. BMC Genomics 8:4
    [Google Scholar]
  28. Lee E. J., Karoonuthaisiri N., Kim H. S., Park J. H., Cha C. J., Kao C. M., Roe J. H. 2005; A master regulator σ B governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor . Mol Microbiol 57:1252–1264
    [Google Scholar]
  29. Link A. J., Phillips D., Church G. M. 1997; Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli : application to open reading frame characterization. J Bacteriol 179:6228–6237
    [Google Scholar]
  30. Liu J., Barry C. E. 3rd, Besra G. S., Nikaido H. 1996; Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem 271:29545–29551
    [Google Scholar]
  31. Nakunst D., Larisch C., Hüser A. T., Tauch A., Pühler A., Kalinowski J. 2007; The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189:4696–4707
    [Google Scholar]
  32. Nickerson K. W., Aspedon A. 1992; Detergent-shock response in enteric bacteria. Mol Microbiol 6:957–961
    [Google Scholar]
  33. Oguiza J. A., Marcos A. T., Malumbres M., Martin J. F. 1996; Multiple sigma factor genes in Brevibacterium lactofermentum : characterization of sigA and sigB . J Bacteriol 178:550–553
    [Google Scholar]
  34. Paget M. S., Bae J. B., Hahn M. Y., Li W., Kleanthous C., Roe J. H., Buttner M. J. 2001; Mutational analysis of RsrA, a zinc-binding anti-sigma factor with a thiol–disulphide redox switch. Mol Microbiol 39:1036–1047
    [Google Scholar]
  35. Park S. D., Lee S. N., Park I. H., Choi J. S., Jeong W. K., Kim Y., Lee H. S. 2004; Isolation and characterization of transcriptional elements from Corynebacterium glutamicum . J Microbiol Biotechnol 14:789–795
    [Google Scholar]
  36. Pátek M. 2005; Regulation of gene expression. In Handbook of Corynebacterium glutamicum pp 81–98 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC press;
    [Google Scholar]
  37. Rodrigue S., Provvedi R., Jacques P. E., Gaudreau L., Manganelli R. 2006; The σ factors of Mycobacterium tuberculosis . FEMS Microbiol Rev 30:926–941
    [Google Scholar]
  38. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  40. Singer M. M., Tjeerdema R. S. 1993; Fate and effects of the surfactant sodium dodecyl sulfate. Rev Environ Contam Toxicol 133:95–149
    [Google Scholar]
  41. Sirisattha S., Momose Y., Kitagawa E., Iwashashi H. 2004; Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis. Water Res 38:61–70
    [Google Scholar]
  42. Song T., Dove S. L., Lee K. H., Husson R. N. 2003; RshA, an anti-sigma factor that regulates the activity of the mycobacterial stress response sigma factor SigH. Mol Microbiol 50:949–959
    [Google Scholar]
  43. von der Osten C. H., Gioannetti C., Sinskey A. J. 1989; Design of a defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol Lett 11:11–16
    [Google Scholar]
  44. Wachino J., Yamane K., Shibayama K., Kurokawa H., Shibata N., Suzuki S., Doi Y., Kimura K., Ike Y., Arakawa Y. 2006; Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a Proteus mirabilis isolate demonstrating extraordinary high-level resistance against various aminoglycosides. Antimicrob Agents Chemother 50:178–184
    [Google Scholar]
  45. Yoshihama M., Higashiro K., Rao E. A., Akedo M., Shanabruch W. G., Follettie M. T., Walker G. C., Sinskey A. J. 1985; Cloning vector system for Corynebacterium glutamicum . J Bacteriol 162:591–597
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012690-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012690-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error