1887

Abstract

WbaP is a membrane enzyme that initiates O antigen synthesis in by catalysing the transfer of galactose 1-phosphate (Gal-1-P) onto undecaprenyl phosphate (Und-P). WbaP possesses at least three predicted structural domains: an N-terminal region containing four transmembrane helices, a large central periplasmic loop, and a C-terminal domain containing the last transmembrane helix and a large cytoplasmic tail. In this work, we investigated the contribution of each region to WbaP function by constructing a series of mutant WbaP proteins and using them to complement O antigen synthesis in Δ mutants of serovars Typhi and Typhimurium. Truncated forms of WbaP lacking the periplasmic loop exhibited altered chain-length distributions in O antigen polymerization, suggesting that this central domain is involved in modulating the chain-length distribution of the O polysaccharide. The N-terminal and periplasmic domains were dispensable for complementation of O antigen synthesis , suggesting that the C-terminal domain carries the sugar-phosphate transferase activity. However, despite the fact that they complemented the synthesis of O antigen in the Δ mutant , membrane extracts containing WbaP derivatives without the N-terminal domain failed to transfer radioactive Gal from UDP-Gal into a lipid-rich fraction. These results suggest that the N-terminal region of WbaP, which contains four transmembrane domains, is essential for the insertion or stability of the protein in the bacterial membrane. We propose that the domain structure of WbaP enables this protein not only to function in the transfer of Gal-1-P to Und-P but also to establish critical interactions with additional proteins required for the correct assembly of O antigen in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013136-0
2008-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/440.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013136-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D., Magelhaes P. J., Ram S. J. 2004; Image processing with ImageJ. Biophotonics Int 11:36–43
    [Google Scholar]
  2. Adler J., Bibi E. 2004; Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J Biol Chem 279:8957–8965
    [Google Scholar]
  3. Alexander D. C., Valvano M. A. 1994; Role of the rfe gene in the biosynthesis of the Escherichia coli O7-specific lipopolysaccharide and other O-specific polysaccharides containing N -acetylglucosamine. J Bacteriol 176:7079–7084
    [Google Scholar]
  4. Amer A. O., Valvano M. A. 2000; The N-terminal region of the Escherichia coli WecA (Rfe) protein containing three predicted transmembrane helices is required for function but not for membrane insertion. J Bacteriol 182:498–503
    [Google Scholar]
  5. Amer A. O., Valvano M. A. 2001; Conserved amino acid residues found in a predicted cytosolic domain of WecA (UDP- N -acetyl glucosamine : undecaprenol-phosphate N -acetylglucosamine-1-phosphate transferase) are implicated in the recognition of UDP- N -acetylglucosamine. Microbiology 147:3015–3025
    [Google Scholar]
  6. Amer A. O., Valvano M. A. 2002; Conserved aspartic acids are essential for the enzymic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli . Microbiology 148:571–582
    [Google Scholar]
  7. Anderson M. S., Eveland S. S., Price N. P. 2000; Conserved cytoplasmic motifs that distinguish sub-groups of the polyprenol phosphate :  N -acetylhexosamine-1-phosphate transferase family. FEMS Microbiol Lett 191:169–175
    [Google Scholar]
  8. Arakawa Y., Wacharotayankun R., Nagatsuka T., Ito H., Kato N., Ohta M. 1995; Genomic organization of the Klebsiella pneumoniae cps region responsible for serotype K2 capsular polysaccharide synthesis in the virulent strain Chedid. J Bacteriol 177:1788–1796
    [Google Scholar]
  9. Batchelor R. A., Haraguchi G. E., Hull R. A., Hull S. I. 1991; Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane of Escherichia coli . J Bacteriol 173:5699–5704
    [Google Scholar]
  10. Bibi E., Kaback H. R. 1990; In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc Natl Acad Sci U S A 87:4325–4329
    [Google Scholar]
  11. Bugert P., Geider K. 1995; Molecular analysis of the ams operon required for exopolysaccharide synthesis in Erwinia amylovora . Mol Microbiol 15:917–933
    [Google Scholar]
  12. Cartee R. T., Forsee W. T., Bender M. H., Ambrose K. D., Yother J. 2005; CpsE from type 2 Streptococcus pneumoniae catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit formation. J Bacteriol 187:7425–7433
    [Google Scholar]
  13. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  14. Delgado M. A., Mouslim C., Groisman E. A. 2006; The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60:39–50
    [Google Scholar]
  15. Drew D., Sjöstrand D., Nilsson J., Urbig T., Chin C.-n., de Gier J.-W., von Heijne G. 2002; Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99:2690–2695
    [Google Scholar]
  16. Drummelsmith J., Whitfield C. 1999; Gene products required for surface expression of the capsular form of the group 1 K antigen in Escherichia coli (O9a : K30. Mol Microbiol 31:1321–1332
    [Google Scholar]
  17. Feldman M. F., Marolda C. L., Monteiro M. A., Perry M. B., Parodi A. J., Valvano M. A. 1999; The activity of a putative polyisoprenol-linked sugar translocase (Wzx) involved in Escherichia coli O antigen assembly is independent of the chemical structure of the O repeat. J Biol Chem 274:35129–35138
    [Google Scholar]
  18. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  19. Jiang X. M., Neal B., Santiago F., Lee S. J., Romana L. K., Reeves P. R. 1991; Structure and sequence of the rfb (O antigen) gene cluster of Salmonella serovar typhimurium (strain LT2. Mol Microbiol 5:695–713
    [Google Scholar]
  20. Kashino Y. 2003; Separation methods in the analysis of protein membrane complexes. J Chromatogr B Analyt Technol Biomed Life Sci 797:191–216
    [Google Scholar]
  21. Katzen F., Ferreiro D. U., Oddo C. G., Ielmini M. V., Becker A., Puhler A., Ielpi L. 1998; Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617
    [Google Scholar]
  22. Keenleyside W. J., Whitfield C. 1996; A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J Biol Chem 271:28581–28592
    [Google Scholar]
  23. Lehrer J., Vigeant K. A., Tatar L. D., Valvano M. A. 2007; Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O antigen lipopolysaccharide. J Bacteriol 189:2618–2628
    [Google Scholar]
  24. Löwdin E., Odenholt-Tornqvist I., Bengtsson S., Cars O. 1993; A new method to determine postantibiotic effect and effects of subinhibitory antibiotic concentrations. Antimicrob Agents Chemother 37:2200–2225
    [Google Scholar]
  25. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Marolda C. L., Welsh J., Dafoe L., Valvano M. A. 1990; Genetic analysis of the O7-polysaccharide biosynthesis region from the Escherichia coli O7 : K1 strain VW187. J Bacteriol 172:3590–3599
    [Google Scholar]
  27. Marolda C. L., Vicarioli J., Valvano M. A. 2004; Wzx proteins involved in O antigen biosynthesis function in association with the first sugar of the O-specific lipopolysaccharide subunit. Microbiology 150:4095–4105
    [Google Scholar]
  28. Marolda C. L., Lahiry P., Vinés E., Saldías S., Valvano M. A. 2006; Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347:237–252
    [Google Scholar]
  29. Morona R., Van Den Bosch L., Daniels C. 2000; Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146:1–4
    [Google Scholar]
  30. Nilsson J., Persson B., von Heijne G. 2000; Consensus predictions of membrane protein topology. FEBS Lett 486:267–269
    [Google Scholar]
  31. Osborn M. J., Gander J. E., Parisi E., Carson J. 1972; Mechanism of assembly of the outer membrane of Salmonella typhimurium . Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247:3962–3972
    [Google Scholar]
  32. Price N. P., Momany F. A. 2005; Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 15:29R–42R
    [Google Scholar]
  33. Raetz C. R. H., Whitfield C. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700
    [Google Scholar]
  34. Reeves P. R. 1993; Evolution of Salmonella O antigen variation by interspecies gene transfer on a large scale. Trends Genet 9:17–22
    [Google Scholar]
  35. Schäffer C., Wugeditsch T., Messner P., Whitfield C. 2002; Functional expression of enterobacterial O-polysaccharide biosynthesis enzymes in Bacillus subtilis . Appl Environ Microbiol 68:4722–4730
    [Google Scholar]
  36. Steiner K., Novotny R., Patel K., Vinogradov E., Whitfield C., Valvano M. A., Messner P., Schaffer C. 2007; Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 189:2590–2598
    [Google Scholar]
  37. Stevenson G., Andrianopoulos K., Hobbs M., Reeves P. R. 1996; Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 178:4885–4893
    [Google Scholar]
  38. Valvano M. A. 2003; Export of O-specific lipopolysaccharide. Front Biosci 8:s452–s471
    [Google Scholar]
  39. Wang L., Reeves P. R. 1994; Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. J Bacteriol 176:4348–4356
    [Google Scholar]
  40. Wang L., Liu D., Reeves P. R. 1996; C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J Bacteriol 178:2598–2604
    [Google Scholar]
  41. Wilkinson R. G., Gemski P., Stocker B. A. D. 1972; Non-smooth mutants of Salmonella typhimurium : differentiation by phage sensitivity and genetic mapping. J Gen Microbiol 70:527–554
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013136-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013136-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error